
 
 

  

PROJECT SUMMARY 

FINITE ELEMENT MODEL UPDATING FOR BRIDGE DEFORMATION MEASUREMENTS EXTRACTED FROM 
REMOTE SENSING DATA   
 
This document is a technical summary of the project report, Finite Element Model Updating for Bridge Deformation 
Measurements Extracted from Remote Sensing Data, prepared by David Lattanzi for the U.S. DOT Region 3 University 
Transportation Research Center. 
 
INTRODUCTION 
 
Accurate and rapid condition assessment of in-service transportation structures is critical for system-wide prioritization 
decisions. These routine assessments require evaluating a given structure for a variety of defects and aging phenomena, in 
particular changes in the geometric configuration such as plastic deformations or changes in bearing rotational restraint. 
Such defects have a direct impact on structural capacity and long-term serviceability. While accurate and quantitative 
geometric measurements are extremely valuable, they are impractical to collect and leverage using conventional condition 
assessment methods. In response, three-dimensional (3D) remote sensing has seen expanded interest for the nondestructive 
evaluation (NDE) of geometric changes, due to the flexibility and improving measurement accuracy of these technologies.  
 
The objective of this research project was to develop and implement a procedure for transforming remotely sensed 3D point 
clouds, as can be collected through laser scanning or photogrammetric methods, into inputs for numerical engineering 
simulation tools such as finite element analysis (Figure 1). 
 

 
Figure 1. Process of transforming point cloud data. Data are first interpolated and measurement  

error is quantified. These data are then transformed into deformation field measurements derived  
from the point cloud. In the last step, the data are mapped to a finite element model.  

 
There are several methods to generate dense 3D scans or “point clouds,” including terrestrial laser scanning (TLS) and 
photogrammetry, the process of taking measurements from images [1]. The growing maturity of both of these technologies 
makes them capable of generating photorealistic and scale-accurate 3D models of bridges with accuracy on the millimeter 
scale, sufficient for many inspection and evaluation applications. These 3D representations of arbitrary in-situ conditions 
can currently be used for measurements, volumetric estimation, and change detection [2]–[4]. In most applications, defects 
are identified by comparing a 3D scan of a damaged structure against a scan taken prior to damage onset. Ideally these 
defects are then translated into an update of a finite element analysis (FEA) model of a structure for quantitative asset 
management. Such algorithms would directly support load rating and long-term condition assessment practices by enabling 
quantitative capacity assessments while providing a foundation for asset owners to make data-driven decisions and 
prognoses of vulnerable assets.  



 
While methods exist for quantifying 3D deformations from point cloud data [5], they have not been sufficiently evaluated, 
and the resulting information cannot be leveraged for FEA due to the unstructured nature of the data and complex noise 
characteristics. More importantly, the resulting measurements of deformation require post-processing before they can be 
effectively used in a finite element model [6]. The purpose of this project was to develop an analytical pathway that 
addresses these problems, enables new uses for remote sensing, and provides a basis for rapid and quantitative structural 
capacity in a manner that currently does not exist.  
 
 METHODOLOGY 
 
The overall algorithmic process developed under this research project is shown in Figure 2. First, point clouds are generated 
from a collection of images using a photogrammetric structure-from-motion process (SfM) or laser scanning. Local 
neighborhoods of points are defined for a given point set, defining the statistical basis region for each point in the cloud. 
The points are then interpolated onto a 3D grid in a manner suitable for accurate finite element model updating. Several 
interpolators were considered, including ordinary and universal kriging, as well as inverse distance weighting (IDW).  
 

 
Figure 2. Algorithmic methodological flowchart.  

 
Initially, the research team considered the possibility of computing the deformations prior to interpolation. However, by 
interpolating prior to deformation quantification, the point clouds are effectively smoothed and denoised. This has the carry-
on effect of reducing measurement variances and error, and it eliminated the need for more complex and noise-invariant 
deformation quantification methods. 
 
DATA SUMMARY 

To study the feasibility of the algorithmic process, a series of experimental tests were performed. The focus was on 
controlled laboratory experiments designed to evaluate the measurement accuracy of the interpolation process. The 
experiments were designed to simulate plate deformations in a structural component, and the analysis of the associate point 
clouds. A series of 3D printed specimens were generated (Figure 3). Each specimen represented a deformed plate with a 
different deformation profile. The purpose of the various deflection patterns was to evaluate the effectiveness of 
interpolation on a range of deflection geometries and magnitudes.  The knowledge of the surface function for each shape, 
enabled the isolation of errors from interpolation when compared to the complex sources of errors that can result from the 
photogrammetric reconstruction process.   
 

 
 
 
 
 
 
 

 



 
 

Table 1. Comparative error analysis (RMSE, units of mm) of different interpolation 
variants. Interpolators included ordinary and universal kriging, as well as inverse  

distance weighting. Dense cloud refers to a comparison between the  
uninterpolated point cloud and the ground truth shape profile. 

 

 
 
 
EVALUATION RESULTS  
 
The interpolated results were compared against the ground truth specimen dimensions of each surrogate at each interpolated 
location. An example result from these tests is shown in Table 1. The results of these experiments indicated that interpolated 
measurement error was, on average, 0.72 mm when compared to comparisons between the dense point clouds and the 
functional shape profiles. Differences between ordinary and universal kriging results, as well as with IDW, were negligible. 
With respect to the comparison of ordinary and universal kriging, the differences were negligible in all cases.  Overall, the 
results indicated that, while the kriging process does induce some measurement error, its impacts are minimal compared to 
other sources of error in the remote sensing process.  
 
 CONCLUSION AND IMPLEMENTATION 

The purpose of this study was to develop a process for transforming point cloud data into a format that can be used for finite 
element model updating. The core aspect of this process is statistical interpolation through kriging, also known as Gaussian 
process regression.  The development of this process enables consistent and controllable deformation quantification, with 
reduced distortional noise due to the inherent smoothing that kriging provides. This approach is agnostic to the method of 
data collection and can be used just as effectively for point clouds collected by laser scanners as it can be used for 
photogrammetry- or videogrammetry-based point clouds. Experimental analysis of this process showed that kriging 
maintains the accuracy level of the given point cloud that is used for the observations to make predictions of the deformation 
values at the target locations.  Prior to implementation, future work should evaluate this process at full scale and in a field 
environment. Such experiments are already planned as of the completion of the project. 

  

 
Figure 3: Examples of printed test specimens. 

Shape # Dense Cloud Ordinary Kriging Universal Kriging IDW
1 1.302 1.302 1.302 1.302
2 0.617 0.614 0.614 0.615
3 0.838 0.835 0.835 0.836
4 0.999 0.978 0.978 0.980
5 0.849 0.837 0.837 0.838
6 0.617 0.598 0.598 0.598
7 0.367 0.367 0.367 0.366
8 0.305 0.292 0.292 0.292
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