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C H A P T E R  1  

Introduction 

Optimal management of structures and infrastructure is an ongoing and critical problem aimed at 
appropriate inspection and maintenance policies, dealing with different stochastic degradation impacts and 
recommending optimum actions that serve multi-purpose lifecycle goals. The optimal allocation of 
economic and other resources in such systems is critical in establishing successful policies and is a 
compelling engineering goal. This problem becomes pressing based on the chronic lack of resources, which 
strains the nation's infrastructure, also given its condition, rated as fair to bad, according to the 2021 ASCE 
infrastructure report card. In particular, for pavements and bridges, 1 of every 5 miles of pavement in the 
United States is in poor condition, and 7.5% of the country's bridges have been structurally deficient over 
the last 20 years. Relevant agencies have thus increased interest in comprehensive decision-making 
strategies and solutions. 

Accurate evaluation and prediction of infrastructure components performance and determination 
of optimal maintenance and inspection actions for any infrastructure element throughout its lifetime are 
essential parts of an effective infrastructure asset management framework. The goals of this project were 
to develop artificial lntelligence (AI)-enabled solutions, providing infrastructure condition assessment and 
prediction models, as well as algorithms able to directly suggest optimal maintenance and inspection 
decisions for multi-component infrastructure systems over long planning horizons. 
 
 
BACKGROUND 
 
Determination of inspection and maintenance policies to minimize long-term risks and costs in deteriorating 
engineering environments with various constraints constitutes a complex optimization problem. The major 
computational challenges include (i) the curse of dimensionality, due to exponential scaling of state/action 
set cardinalities with the number of components; (ii) the curse of history, related to exponentially growing 
decision trees with the number of decision steps; (iii) the presence of state uncertainties, induced by inherent 
environment stochasticity and variability of inspection/monitoring measurements; and (iv) the presence of 
constraints, pertaining to long-term stochastic limitations, due to resource scarcity and other 
infeasible/undesirable system responses. This class of hard optimization problems has been mostly tackled, 
as of now, by static age- or condition-based maintenance strategies, and risk-based or periodic inspection 
plans. However, such approaches can manifest various limitations related, among others, to optimality, 
scalability, and incorporation of incomplete information. In addition, many current optimization 
methodologies are based on unconstrained formulations, omitting the critical and often inevitable presence 
of constraints.  

In this work, these challenges are addressed within a joint framework of Partially Observable 
Markov Decision Processes (POMDPs) (Madanat, 1993 ; Madanat & Ben-Akiva, 1994; Papakonstantinou 
& Shinozuka, 2014; Papakonstantinou, et al., 2018) and multi-agent Deep Reinforcement Learning (DRL) 
as in (Andriotis & Papakonstantinou, 2019; Andriotis & Papakonstantinou, 2021). POMDPs optimally 
tackle (ii)-(iii), combining stochastic dynamic programming with Bayesian inference principles. Multi-
agent DRL addresses (i) through deep function parametrizations and decentralized control assumptions. 
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Challenge (iv) is herein handled through proper state augmentation and Lagrangian relaxation, with 
emphasis on lifecycle risk-based constraints and budget limitations. The underlying algorithmic steps are 
provided in this report and the proposed framework is found to outperform well-established policy baselines 
and facilitate adept prescription of inspection and intervention actions, in cases where decisions must be 
made in the most resource- and risk-aware manner. 

In addition, accurate prediction of the performance of infrastructure components, including 
concrete bridge decks, is required when determining the maintenance and repair lifecycle actions that are 
to be performed. By using accurate estimates, agency costs due to maintenance, repair, and reconstruction, 
along with user costs, can all be minimized. Typically, the prediction of pavement conditions is utilizing 
statistical models; however, these methods restrain the deterioration modeling to follow a specific 
distribution, e.g., (Agarwal, et al., 2010; Sobanjo, et al., 2010; Manafpour, et al., 2018; Mishalani & 
Madanat, 2002). However, there is a vast amount of data available on infrastructure component 
performance, and AI techniques can hence be favorable in predicting future infrastructure conditions. To 
this end, in this report we explore and develop a Random Survival Forest approach  (Lu & Guler, 2021) to 
effectively model the duration a bridge deck may be described by a certain condition rating (CR). 
 
 
OBJECTIVES 
 
In this work we are leveraging significant advances in AI methodologies to improve efficient life-long 
management of transportation infrastructure systems. The goal is to develop AI-enabled frameworks, able 
to provide infrastructure condition assessments and predictions, as well as direct optimal maintenance and 
inspection decisions/actions/policies for multi-component infrastructure systems. The key objectives are 
thus listed as follows: 
 

(i) Improve predictive models for bridge deck conditions by using AI-enabled data analysis 
methods;  

(ii) Further enhance our DRL framework by incorporating key financial, risk, and other related 
constraints, considered in any desired time period;  

(iii) Suggest solutions and approaches toward a unified, integrated AI asset management 
framework;  

(iv) Benchmark the developed algorithms against state-of-the-art and state-of-practice decision-
making rules; 

(v) Develop and validate approaches based on data, practices, standards, etc., by DOTs, with 
emphasis on PennDOT systems. 
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C H A P T E R  2  

Random Survival Forest Model for Bridge 
Deck Deterioration 

The analysis of bridge deck deterioration is critical to infrastructure system management. Bridge deck 
deterioration models can predict the future conditions of assets and in turn guide rehabilitation programs 
and budget allocation to maximize the lifespan of bridges. Deterioration modeling can be done to model 
the lifecycle deterioration process or to model the deterioration probabilities from a specific condition rating 
to a lower CR for individual time steps. The present study focuses on the latter approach. 

Interestingly, transportation infrastructure system management shares many similarities with 
medical research, since both focus on the survival probability of an asset or a patient, known as survival 
analysis. Classic models used for survival analysis include simple linear models, Kaplan-Meier estimator, 
Cox proportional regression, distribution-based stochastic models, etc. (Lunn, et al. 1995) (Goyal, Whelan 
and Cavalline 2019) (Manafpour, et al. 2018). With improvements in computational power, machine 
learning methods have started to demonstrate superiority over traditional models both in model accuracy 
and capability (Fathi, et al. 2019) (Assaad and El-adaway 2020). However, some advanced machine 
learning-based survival models, such as random survival forest (RSF), are only used in the medical field 
and their suitability in the infrastructure management area has not been examined. Thus, this project aimed 
at studying the suitability of RSF for bridge deck deterioration analysis and testing its performance 
compared to a traditional statistical method, i.e., Weibull distribution-based accelerated failure time model.  
 
 
LITERATURE REVIEW 
 
Survival models are different than most typical models, since the independent variable has two dimensions: 
(1) the duration that the object has been in a specific condition, known as the sojourn time; and (2) whether 
the entire duration of this sojourn time is observed or not, i.e., censoring. Censoring occurs when the start 
or endpoint of being in a condition is not observed, but the knowledge of the minimum duration an object 
was in a specific condition still provides valuable input into the model. 

Generally, non-parametric and semi-parametric models can capture the deterioration process in a 
more realistic manner, since they are not required to follow a mathematical distribution (Goyal, Whelan 
and Cavalline 2019) (Mauch and Madanat 2001). However, these types of models assume that covariates 
increase or decrease hazard in a proportional manner, which is a significant weakness of these types of 
models such as the Cox regression. Parametric models are simple, efficient, and interpretive, but typically 
have low accuracy, since the real deterioration process is random, which is especially problematic when 
the data size is small. Commonly used distributions for parametric survival models include exponential, 
Weibull, Log-normal, gamma, and generalized gamma distributions (Manafpour, et al. 2018) (Pascoa, 
Ortega and Cordeiro 2011) (Edirisinghe, Setunge and Zhang 2013). The censored and uncensored data 

 
0 This chapter is largely based on the journal paper: Lu, M., Guler, S.I. Random survival forest model for bridge deck 
deterioration. Transportation Research Record. Under Review.  
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are jointly considered in stochastic models by jointly using the hazard function (instantaneous probability 
of failure) for uncensored data and the reliability function (the cumulative probability of failure) for 
censored data in the estimation of the models (Goyal, Whelan and Cavalline 2019) (Pascoa, Ortega and 
Cordeiro 2011). 

On the other hand, machine learning methods have been recently studied for modeling the 
deterioration of transportation infrastructure (Bashar and Torres-Machi 2021) (Contreras-Nieto, et al., 
2018). One study compared five data mining techniques—logistic regression, decision trees, neural 
network, gradient boosting, and support vector machine—for steel bridge superstructure deterioration, and 
found that logistic regression achieved the highest prediction accuracy (Contreras-Nieto, et al., 2018). 
Another study showed that the back-propagation neural network can predict bridge deterioration with 
75.4% accuracy (Ying-Hua 2010). Assaad and El-Adaway even observed a 91.44% testing accuracy for 
predicting the condition of a bridge deck using a well-tuned ANN model (Assaad and El-adaway 2020). 
Other commonly used machine learning approaches in infrastructure deterioration modeling include k-
nearest neighbors, recurrent neural networks, and random forest, in which the ensemble learning algorithms 
(i.e., random forest) are believed to have superior performance (Piryonesi and El-Diraby 2019). Even 
though these machine learning methods have been shown to achieve good prediction accuracy, they only 
take traditional datasets as input. Therefore, these methods cannot incorporate censored data nor provide a 
complete deterioration probability curve for the entire analysis window.  

Currently, two advanced machine learning methods that can model survival exist, namely random 
survival forest (RSF) and survival support vector machine (Survival-SVM). RSF is different from the 
traditional random forest (RF) in where the splitting role for partitioning the dataset and the predicted 
approach for the terminal leaves are adjusted to incorporate censored data and provide a complete 
deterioration probability curve. Survival-SVM is an extension of Rank SVM and only treats a pair of ranks 
as valid when the lower observed time is uncensored, since the exact duration of censored data is unknown  
(Belle, et al. 2008). Estimating a Survival-SVM can be very complex and time-consuming, especially 
when the kernel function is complex and the data size is large. Thus, RSF is more popular for survival 
analysis. However, to the authors’ knowledge, these advanced machine learning-based survival models are 
only used in the medical area. Example applications include clinical risk prediction (Schmid, Wright and 
Ziegler 2016), survival prediction of breast cancer patients (Wright, Dankowski and Ziegler 2017), or 
comparison of survival from different illnesses (Nasejje, et al. 2017). Different applications have focused 
on tailoring the methods to the specific problem considered, such as determining how to best implement 
the splitting of the tree (Schmid, Wright and Ziegler 2016) (Wright, Dankowski and Ziegler 2017). 
Further, one study compared the RSF to a Cox regression and demonstrated that the two methods achieved 
compatible results in modeling breast cancer survival, while RSF showed a slightly better performance than 
other approaches (Omurlu, Ture and Tokatli 2009).  

The use of survival machine learning methods in the area of infrastructure deterioration is unknown. 
Since the infrastructure deterioration and medical survival process are significantly different and possess 
different deterioration patterns, the appropriate implementation of survival machine learning methods for 
infrastructure deterioration needs to be studied. 

Research objectives 
Based on the literature review, the present study introduces the RSF model into the infrastructure 
management literature and adapts it for bridge deck deterioration analysis. The performance of RSF is 
compared to a traditional stochastic model to analyze the advantages of the different types of modeling 
approaches. Further, the RSF method’s independent variable selection process is tailored to the bridge deck 
deterioration analysis. 
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METHODOLOGY 
 
The primary model used in the present study is RSF. This section outlines the basic theory of RSF and the 
major difference from a traditional random forest methodology. 

Random Survival Forest 
RSF is a type of ensemble learning approach that combines a series of basic learners to improve predictive 
accuracy and robustness. The basic theory is similar to a traditional random forest. The general construction 
of a decision tree and a random forest is illustrated in Figure 1. A typical random forest can be described 
with the following hyperparameters: (a) number of estimators, (b) maximum depth, (c) minimum number 
of samples in a leaf, and d) the maximum number of features considered for splitting. The number of 
estimators determines the number of trees estimated to be combined for the random forest. As this number 
increases, the random forest model becomes more robust but also more complex and difficult to interpret. 
The maximum depth of the tree determines the number of layers considered. As the tree depth increases, 
each terminal leaf will be representative of a smaller subset of the data. The minimum number of samples 
in a leaf is also related to the tree depth, i.e., the tree will not be split further once the minimum number of 
samples in a leaf is met, even if the tree depth allows for further splitting. Finally, the maximum number of 
features considered for splitting represents the number of variables considered in each tree. While all 
variables are considered for a decision tree, in a random forest method, each tree only considers a subset of 
variables, which improves the robustness of the model and avoids overfitting. Detailed mathematical 
expressions can be found in the literature (Biau and Scornet 2016). 

The traditional random forest is a powerful tool, but censored data cannot be incorporated into this 
model. Hence, RSF modifies traditional random forests to improve the splitting role, prediction method, 
and evaluation metric to be able to account for censored deterioration data. The other approaches used to 
improve an RSF, like bagging, boosting, and pruning, are similar to the traditional random forest, and thus 
the details are not repeated here (Ishwaran, et al. 2008).  

Splitting role 
The splitting role is used to partition the dataset into subsets that maximize the difference between and 
minimize the difference within each subset. As a result, observations that share similar characteristics are 
grouped into the same terminal node; thus, a prediction based on the observations within a terminal node 
can closely represent the data pattern of its members.  
 

      

Figure 1. Architecture of a decision tree (left) and a forest (right). 
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In the traditional random forest, the common splitting roles, such as Gini index and entropy, aim at 
maximizing the similarity of the output within each subset. Normally, the output is a one-dimension variable 
and has clear equations to measure its similarity. However, for the survival data, the output is two-
dimensional, and the final prediction is a complete deterioration probability curve. Thus, the splitting role 
in RSF should aim at generating subsets that have the most different deterioration patterns. The log-rank 
test is commonly used to quantify the difference in the deterioration patterns predicted from each subset  
(Wellek 1993). In the log-rank test, the null and alternative hypotheses are: 
𝑯𝑯𝟎𝟎:  The deterioration pattern in the two datasets is identical. 
𝑯𝑯𝟏𝟏:  The deterioration pattern in the two datasets is significantly different.  
The test statistic function for the Z-value to accept the null hypothesis is shown in Equation (1): 

𝑍𝑍 =
∑ �𝑂𝑂1,𝑖𝑖 − 𝐸𝐸1,𝑖𝑖�𝑘𝑘
𝑖𝑖=1

�∑ 𝑉𝑉𝑖𝑖𝑘𝑘
𝑖𝑖=1

~𝑁𝑁(0,1) (1) 

where, 
𝑂𝑂1,𝑖𝑖 is the observed number of deaths at the time, 𝑡𝑡𝑖𝑖, in subset 1; 
𝐸𝐸1,𝑖𝑖 is the expected number of deaths at the time, 𝑡𝑡𝑖𝑖, in subset 1, which can be calculated as 𝐸𝐸1,𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑌𝑌1,𝑖𝑖

𝑌𝑌𝑖𝑖
;  

𝑌𝑌1,𝑖𝑖 is the number of individuals at risk (neither dead nor censored) at the time 𝑡𝑡𝑖𝑖 in subset 1; 
𝑑𝑑𝑖𝑖 is the number of individuals dead at the time 𝑡𝑡𝑖𝑖;  
𝑉𝑉𝑖𝑖 is the variance of the observed number of deaths, which can be calculated as: 

𝑉𝑉𝑖𝑖 =
𝑌𝑌2,𝑖𝑖𝑌𝑌1,𝑖𝑖𝑑𝑑𝑖𝑖(𝑌𝑌𝑖𝑖 − 𝑑𝑑𝑖𝑖)

𝑌𝑌𝑖𝑖2(𝑌𝑌𝑖𝑖 − 1)
 (2) 

Prediction method 
The prediction method for the RSF relies on the use of a cumulative hazard function (CHF) that is measured 
using the Nelson-Aalen estimator. The cumulative hazard represents the aggregated hazard, or 
instantaneous risk of failure, over time. It can be interpreted as the number of times a failure (i.e., the 
condition rating lowering) would be expected over the analysis window.  The Nelson-Aalen estimator is 
much focused on the hazard of the asset during the lifecycle. The CHF of the Nelson-Aalen estimator is: 

𝐻𝐻�(𝑡𝑡) = �
𝑑𝑑𝑖𝑖
𝑌𝑌𝑖𝑖𝑡𝑡𝑖𝑖<𝑡𝑡

 (3) 

 
where,  
𝑡𝑡𝑖𝑖 are the elements of all distinct event times;  
𝑑𝑑𝑖𝑖 is the number of deaths at the time 𝑡𝑡𝑖𝑖;  
𝑌𝑌𝑖𝑖 is the total number of individuals at risk (neither dead nor censored) at the time 𝑡𝑡𝑖𝑖. 
 
To predict the Nelson-Aalen estimator for a given terminal leaf, the hazard of all data that fall in that leaf 
are combined. This can be used to determine the risk of failure at a given time for a new bridge deck. 

Evaluation metric 
In order to understand how well a given RSF performs, the accuracy in prediction of that RSF needs to be 
determined. However, the prediction of the deterioration pattern for a single observation is not necessarily 
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meaningful, since the results are probabilistic. Therefore, the performance of the RSF method is evaluated 
by comparing the ranking of the predicted risk score to the actual survival data in the whole testing dataset. 
The risk score, 𝑟𝑟, is the total number of failures expected over the lifetime of the study for a given bridge 
deck with a set of attributes, 𝒙𝒙, within the analysis window (Pölsterl 2020). This risk score can be estimated 
as the sum of the estimated CHF, 𝐻𝐻�ℎ, for a terminal node ℎ as shown in Equation (4).  

𝑟𝑟 =  � 𝐻𝐻�ℎ(𝑇𝑇ℎ𝑗𝑗|𝒙𝒙)
𝑛𝑛ℎ

𝑗𝑗=  1

 (4) 

where,  
𝑛𝑛ℎ is the number of distinct uncensored times of samples in terminal node ℎ; 
𝑇𝑇ℎ𝑗𝑗 is the 𝑗𝑗 𝑡𝑡ℎ item of these distinct uncensored times in terminal node ℎ. 
 

The model evaluation first predicts the risk scores for a set of bridges in the testing dataset. Next, 
these bridges are ranked by risk score from lowest to highest. Finally, the ranking of the real (observed) 
survival times are determined. The ranking from the model prediction is compared to the ranking from the 
real data to determine the concordance index (C-index), which reflects the ability of a survival model to 
predict the survival time rank based on the predicted risk scores. The C-index can be computed as Equation 
(5).  

𝐶𝐶 =
∑ 𝐼𝐼𝑇𝑇𝑗𝑗<𝑇𝑇𝑖𝑖 ∗ 𝐼𝐼𝑟𝑟𝑗𝑗<𝑟𝑟𝑖𝑖 ∗ 𝛿𝛿𝑗𝑗𝑖𝑖,𝑗𝑗

∑ 𝐼𝐼𝑇𝑇𝑗𝑗<𝑇𝑇𝑖𝑖 ∗ 𝛿𝛿𝑗𝑗𝑖𝑖,𝑗𝑗
 (5) 

where,  
𝑟𝑟𝑖𝑖 is the predicted risk score of a unit 𝑖𝑖;  
𝐼𝐼𝑇𝑇𝑗𝑗<𝑇𝑇𝑖𝑖 = 1 if 𝑇𝑇𝑗𝑗 < 𝑇𝑇𝑖𝑖 else 0;  
𝐼𝐼𝑟𝑟𝑗𝑗<𝑟𝑟𝑖𝑖 = 1 if 𝑟𝑟𝑗𝑗 < 𝑟𝑟𝑖𝑖 else 0; 
𝛿𝛿𝑗𝑗 denote the censorship of the data. 𝛿𝛿𝑗𝑗 = 0 means uncensored data, 𝛿𝛿𝑗𝑗 = 1 means censored data. The range 
of the C-index is from 0.5 to 1, where 𝐶𝐶 =  1 corresponds to the best model prediction, and 𝐶𝐶 =  0.5 
represents a random prediction. 
 Finally, the C-index can also be rank the importance of different input variables in determining the 
survival curve. To do so, a permutation-based feature importance is calculated by measuring the C-index 
of the original model and comparing it to a shadow model. The shadow model is created by randomly 
shuffling the values of a given attribute in the training data and determining the C-index. The difference in 
the C-index of the original model and shadow model is assumed to be indicative of the importance of that 
variable in determining the final survival curve. Hence, the rank of features is determined as the ordered 
gains in C-index. 
 
 
EXPERIMENTS AND RESULTS 
 
To demonstrate the performance of RSF in bridge deck deterioration modeling, the dataset of 22,000 bridge 
decks’ inspection records from Pennsylvania was adopted; a summary of the dataset is described in this 
section. First, the choice of independent variable is explored. Two candidate variables, namely sojourn time 
and cumulative truck traffic (CTT), are tested. Next, the hyperparameters of the RSF are calibrated, the best 
structure is demonstrated, and the model is compared to a commonly used stochastic model, namely the 
Weibull distribution-based accelerated failure time model. 
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Data description 
The Pennsylvania Department of Transportation (PennDOT) conducts regular inspection of approximately 
22,000 state-owned bridges at most every two years. In the inspection report, a general condition rating is 
assigned to a bridge deck to reflect the general condition of the bridge deck between 1 and 9, where 
condition rating 9 represents the best condition. In the present study, the dataset was separated into 9 subsets 
based on the condition rating. The sojourn times for each CR were extracted, including whether the sojourn 
time was censored or not. A sojourn time with an unobserved start point or endpoint or suffering from an 
incident or rehabilitation that significantly changed the CR was treated as a censored data point. After 
cleaning the raw data, valid information for 18,354 bridges was obtained, and a total of 44,086 sojourn 
times were extracted and classified given the CR. Summary statistics for the distribution of the sojourn 
times were determined as shown in Table 1. 
 It can be seen that only a few bridge decks have uncensored datapoints with condition rating lower 
than 4, since typically CR 1 through 3 are considered poor condition. Thus, models of CR 4 and higher are 
more reliable. In this study, the RSF was illustrated with the sub-dataset of CR 6 and from hereon in, 
deterioration probability refers to the probability of a bridge deck deteriorating from CR 6 to CR 5. 
However, note that similar results were obtained for other CR values.  
 The attributes of each bridge deck structural component are collected as covariates to correlate with 
the reliability of the bridge. The major attributes used in this study are summarized in Table 2. 

Table 1. Statistic of sojourn times of bridge decks. 

Condition Censored Censored Censored Uncensored Uncensored Uncensored 

Rating Count Mean 
(days) 

Std 
(days) Count Mean 

(days) 
Std 

(days) 

CR 1 19 2,809 2,509 2 1,040 348 

CR 2 104 1,690 1,263 13 1,818 1,124 

CR 3 1,007 2,022 1,709 170 2,034 1,421 

CR 4 3,132 3,197 2,410 783 2,581 1,717 

CR 5 6,016 4,010 2,759 2,317 2,935 1,794 

CR 6 7,264 4,024 2,622 3,865 2,977 1,719 

CR 7 8,636 3,957 2,603 3,817 3,054 1,760 

CR 8 3,234 2,610 1,927 2,612 2,501 1,443 

CR 9 654 1,420 1,106 381 1,747 1,049 

Total 30,066 25,739 18,908 13,960 20,687 12,375 

Independent variable selection 
An appropriate choice of the independent variable can significantly improve the performance of the model. 
Sojourn time is commonly used for infrastructure management, which represents the duration for which a 
bridge has been in a specific condition. However, time-based deterioration models may not be able to fully 
capture the reliability of bridge decks, since the amount of truck traffic can significantly impact bridge deck 
deterioration. The average daily truck traffic (ADTT) varies across different bridges and influences the 
design of a bridge deck. Hence, in addition to the sojourn times, the cumulative truck traffic, defined as the 
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product of the sojourn time and average daily truck traffic, is proposed as an alternative independent 
variable.  

Table 2. Attributes’ description and values, including the count of each value in the dataset. 

Attribute Description Values (Counts) 

DISTRICT  District number 

District 1 (2,707); District 2 (2,102); District 3 (3,171); 
District 4 (2,200); District 5 (2,215); District 6 (2,912); 
District 8 (5,369); District 9 (3,497); District 10 (2,443); 
District 11 (2,672); District 12 (2,817). 

STRUC_TYP  Deck structure type Concrete - Reinforced (26,324). 

MAIN_MATERIAL_
TYPE  Main materials type 

Steel (8,531); Concrete (Cast in Place) (6,205); 
Concrete (Precast) (537); Prestressed Precast 
Concrete (P/S) (15,774); Concrete Encased Steel 
(982). 

MAIN_PHYSICAL
_TYPE  

Physical makeup of the 
main span of the 
structure 

Reinforced (6,744); Pretensioned (15,600); Rolled 
Sections (4,787); Rolled Sections with Cover Plates 
(1,174); Combination, Rolled Sections/Cover-Plates 
(334); Other (3,313). 

MAIN_SPANS  
Main bridge spans 
(number of spans in the 
main unit) 

Single span (20,209); Multi-span (11,122). 

MAIN_STRUC_C
ONFIG  

Structural configuration 
for the main span of the 
structure 

Slab (Solid) (2,378); T-Beams (3,985); I Beams 
(11,653); Box Beam - Single (5,681); Box Beam - Adj 
(6,614); I-Welded Beams (410); Girder Weld/Deck 
(722). 

DECK_REBAR_T
YPE  Deck rebar type Bare Rebar Type (12,960); Galvanized Rebar Type 

(561); Epoxy Rebar Type (11,738); Unknown (6,794). 

MEMBTYPE  
Waterproofing 
membrane on the 
bridge main span 

None (26,722); Preformed Fabric (3,816); Other (368). 

SURF_TYPE  
Wearing surface types 
on the bridge main 
span 

Concrete Overlay (17,543); Epoxy Overlay (974); 
Bituminous (13,340). 

LENGTH Bridge length The total overall length of the bridge. 

DECK_WIDTH Bridge deck width Bridge deck width. 

ADT_Total Average daily traffic in 
total 

Average daily traffic in total, including all types of 
vehicles. 

ADTT Average daily truck 
traffic Average daily truck traffic. 

 

Note: The Values (Counts) only show the values which count is larger than 1% of the whole dataset. 
 

The reliability analysis for both independent variables, sojourn time and CTT, is demonstrated for 
three typical attributes, i.e., rebar type, span number, and surface type to compare the performance of the 
two independent variables. 

Rebar type 
Three different types of rebar used for bridge decks were compared: bare, epoxy-coated, and galvanized. 
Figure 2a shows the sojourn time of bridge decks with different CRs and rebar types and suggests that the 
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average sojourn time (~7 years) is mostly independent of rebar type. However, the number of bridges 
(Figure 2b) and the ADTT that a bridge experienced (Figure 2c) with different rebar types are significantly 
different. There are more bridges in higher condition ratings with galvanized or epoxy rebar, and these 
bridges often experience a higher ADTT. Thus, even though the bridge decks have similar sojourn times, 
the advantage of the galvanized or epoxy rebar might be compromised by the heavier traffic load. Thus, the 
sojourn time alone is not enough to reflect the reliability difference of different rebar types. However, the 
difference in reliability based on rebar type can be seen when considering CTT (Figure 2d). The results 
suggest that bridge decks with epoxy or galvanized rebar have higher reliability compared to the bare rebar 
bridges when considering CTT, which aligns with engineering judgment (Yeomans 2001). 
 

  

(a)  Sojourn Time (b) Number of Bridges 

  

(c) Average Daily Truck Traffic (d) Cumulative Truck Traffic 

Figure 2. Distribution for rebar type by condition rating of (a) sojourn time, (b) number of bridges, 
(c) average daily truck traffic, and (d) cumulative truck traffic. 
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(a)  Sojourn Time (b) Number of Bridges 

  

(c) Average Daily Truck Traffic (d) Cumulative Truck Traffic 

Figure 3. Distribution for span type by condition rating of (a) sojourn time, (b) number of bridges, 
(c) average daily truck traffic, and (d) cumulative truck traffic. 

Span number 
Single-span bridges were compared to multi-span bridges to see trends in deterioration. The average deck 
length of a single-span bridge is 42 ft, compared to 278 ft for a multi-span bridge. From the sojourn time 
distribution, single-span and multi-span bridges perform similarly.  However, this does not necessarily 
indicate that a single-span bridge is as reliable as a multi-span bridge from an engineering perspective. 
Considering the number of bridges (see Figure 3b) and the ADTT (see Figure 3c), while there are more 
single-span bridges, the multi-span bridges carry more trucks. This implies that the multi-span bridges are 
mostly constructed in areas with heavy truck traffic but can still achieve similar sojourn times as single-
span bridges. This indicates that the multi-span bridges have higher reliability than single-span bridges, 
which is confirmed by the CTT-based analysis (see Figure 3d). 

Surface type 
Overlays are used to remedy spalling and cracking for deteriorated bridge surfaces. Comparing the sojourn 
times for the three different overlay materials used (concrete, asphalt, and epoxy), it can be seen that bridge 
decks that have an asphalt overlay have on average an 8.8% greater sojourn time, see Figure 4a. However, 
only a few bridges have an epoxy overlay (see Figure 4b), and these bridges have larger daily truck traffic  
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compared to bridges with concrete or asphalt overlay (see Figure 4c). Hence, when considering the CTT, 
bridges with epoxy overlay have the highest reliability, while bridges with asphalt overlay have the lowest 
reliability (see Figure 4d). The reliability of the different overlay material considering the CTT is more 
aligned with field experiments (Sprinkel 2001). 

Overall, comparing the reliability of bridge decks with different rebar types, span numbers, and 
surface types reveals that CTT can better reflect the reliability of a bridge as compared to sojourn time and 
better match engineering judgment. Generally, it might be difficult to capture the reliability difference of 
the attributes considering only sojourn time, since the design choice is often influenced by expected traffic 
load.  

General Machine Learning models 
Initially, eight basic machine learning-based classifiers are used to model deterioration. These are: 

1) K-nearest neighbors classifier (with a number of neighbors as 3);  
2) Decision tree classifier (with maximum depth of the tree as 5);  
3) Random forest classifier (with maximum depth of the tree as 5, the number of trees in the forest as 

10, and the number of feathers to consider when looking for the best split as 1); 
 

  

(a)  Sojourn Time (b) Number of Bridges 

  

(c) Average Daily Truck Traffic (d) Cumulative Truck Traffic 

Figure 4. Distribution for surface type by condition rating of (a) sojourn time, (b) number of 
bridges, (c) average daily truck traffic, and (d) cumulative truck traffic. 
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4) Neural network (with the number of neurons in the hidden layer as 100, learning rate as 0.001); 
5) Adaboost classifier; 
6) Gaussian Naïve Bayes; 
7) Quadratic discriminant analysis; and 
8) Support Vector Machine with regularization parameter as 1 and kernel type is linear. 

Each approach is tested on two datasets: the first dataset uses the entire dataset to train the model 
and then utilizes the same dataset for testing; the second dataset selects 2/3 of the whole dataset as the 
training dataset and the other 1/3 as the test dataset. Four tests are performed on each dataset: (1) all of the 
58 input variables are used, (2) only selected bridges with reconstruction history are used to train the model 
(out of the 19,198 bridges in the inspection dataset, 3,393 of them have reconstruction records). These 
approaches are implemented on the dataset by the Sk-learn Python machine learning package. The correct 
prediction rates of each test are shown in Table 3. 

Table 3. Results of basic machine learning methods. 

 ML Approach All Variables of All Bridges 
All Variables 
of Bridges 
Reconstructed 

Train 
- 
Train 

Nearest Neighbors  66.26% 71.32% 
Decision Tree  43.29% 46.84% 
Random Forest  37.97% 41.99% 
Neural Net  40.82% 28.07% 
AdaBoost  38.27% 22.54% 
Naive Bayes  20.24% 26.73% 
QDA  2.79% - 
SVM - - 

Train 
- 
Test 

Nearest Neighbors  36.01% 42.51% 
Decision Tree  42.58% 45.25% 
Random Forest  35.63% 39.98% 
Neural Net  38.97% 36.75% 
AdaBoost  28.80% 38.16% 
Naive Bayes  17.54% 27.34% 
QDA  5.07% - 

 
From the results, it can be seen that the Nearest Neighbors Classifier achieved the best results, 

especially for bridges that were reconstructed. The Nearest Neighbors Classifier achieves these results since 
its goal is to look for bridges with similar configurations to find patterns in the data that match closely.   

However, as discussed earlier, even though these machine learning methods can achieve decent 
prediction accuracy, they cannot incorporate censored data nor provide a complete deterioration probability 
curve for the entire analysis window. Hence, next a Random Survival Forest model is implemented.  
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Random Survival Forest implementation 
 
In this section, the RSF model is implemented considering both sojourn time and CTT as the independent 
variable to further compare their performance. When sojourn time is the independent variable, the ADTT 
is incorporated as one of the covariates, while when CTT is selected as the independent variable, ADTT is 
excluded from the model. 66.67% of the data is selected for training the model and the remainder is used 
for testing the performance of the model.  

To achieve the best performance of the RSF, the hyperparameters need to be well-tuned. The main 
hyperparameters that need to be tuned include (a) the number of estimators, (b) maximum depth, (c) 
minimum samples in a leaf, and (d) the maximum features for splitting. A commonly used approach for 
tuning the hyperparameters of machine learning methods is grid-search, which is also used in the present 
study (Assaad and El-adaway 2020). The RSF model is implemented with the python package scikit-
survival (Pölsterl 2020). The grid search space for these hyperparameters is shown in Table 4. 
The hyperparameters of RSF that achieved the top five performances for the sojourn time-based model and 
CTT-based model are shown in Table 5. 

Table 4. Grid search space for the hyperparameters of RSF. 

Hyperparameters Search space 
Number of estimators 110, 120, 130, …, 300 

Maximum depth 2, 3, 4, 5, …, 30 

Minimum samples in a leaf 20, 40, 60, 80, …, 300 

Maximum features for splitting 2, 3, 4, 5, …, 12 

Table 5. Best model configuration from grid-search. 

Independent 
Variable Rank Number of 

Estimators 
Max 

Depth 
Min 

Samples 
in a Leaf 

Max # of 
Features 

for 
Splitting 

C-index 
on Training 

Dataset 

C-index 
on 

Testing 
Dataset 

Sojourn time 1 200 12 40 5 0.6779 0.5898 

Sojourn time 2 200 12 20 5 0.7299 0.5892 

Sojourn time 3 200 12 60 5 0.6561 0.5812 

Sojourn time 4 200 12 80 5 0.6428 0.5806 

Sojourn time 5 190 12 200 5 0.6099 0.5801 

CTT 1 200 12 200 8 0.8643 0.8336 

CTT 2 200 12 40 5 0.8792 0.8322 

CTT 3 200 12 60 5 0.8735 0.8319 

CTT 4 200 12 200 6 0.8636 0.8316 

CTT 5 200 12 80 5 0.8714 0.8310 
 
 
The results suggest that the CTT-based models significantly outperformed the sojourn time-based 

model in terms of predictive score in both testing and training datasets. This further confirms that the 
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impacts of attributes on reliability can be more clearly differentiated based on its performance with respect 
to CTT. The best CTT-based model consisted of 200 estimators. As the number of estimators increases, the 
advantage of the ensemble approach becomes apparent and the accuracy of the model increases. However, 
increasing the number of estimators beyond 200 no longer improves the accuracy, but increases the 
complexity of the model. The optimal maximum depth is found to be 12, and the minimum number of 
samples in a leaf is found to be 200. These two hyperparameters together determine the size of each tree. 
When the tree is deep, the number of samples in a leaf becomes small, and the deterioration curve based on 
these samples becomes too specific and not representative of general categories. When the tree is too small, 
the dataset is not partitioned enough, and the information available from the covariates is not fully explored. 
The maximum number of features for splitting can help control the amount of randomness of the RSF. The 
optimal value of this is 8, which denotes that in each splitting node, the model randomly selects 8 out of the 
total of 12 features used in this study (as shown in Table 5) to search for the best splitting point. This helps 
build a diverse set of decision trees for the random forest and helps avoid overfitting.  

With the well-tuned RSF model, the deterioration curve for a new observation can be predicted. 
The importance rank of each feature in the RSF determined as a result of the permutation-based feature 
importance is shown in Figure 5. As can be seen, the total amount of traffic has the highest importance in 
determining the CHF, followed by the deck width and the length of the bridge.  

  

 

Figure 5. Permutation-based feature importance. 

To further illustrate the deterioration curve of individual bridges, the first 5 observations in the 
testing dataset are used as an example, see Figure 6. This figure illustrates the CHF obtained by using the 
average of the deterioration curves from all the trees in the random forest. As can be seen, the RSF model 
can clearly differentiate between different shapes of CHF.  
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Figure 6. Cumulative hazard function prediction of new observation. 

Comparison with AFT-Weibull model 
To compare RSF to traditional deterioration models, a Weibull distribution-based accelerated failure time 
model is chosen as a benchmark, which is commonly used in infrastructure deterioration analysis 
(Manafpour, et al. 2018) (Andersson, Björklund and Haraldsson 2016). The AFT-Weibull model can 
take any bathtub shape distributions as the basic deterioration function and has more flexibility. The 
probability density function (PDF) of the Weibull distribution, 𝑓𝑓(𝑡𝑡), is shown in Equation (6): 
 

𝑓𝑓(𝑡𝑡, 𝜆𝜆,𝑘𝑘) = �
𝑘𝑘
𝜆𝜆
�
𝑡𝑡
𝜆𝜆
�
𝑘𝑘−1

𝑒𝑒−�
𝑡𝑡
𝜆𝜆�

𝑘𝑘

𝑡𝑡 ≥ 0

0 𝑡𝑡 < 0
 (6) 

where,  
𝑡𝑡 is the independent variable, in this case, CTT;  
𝜆𝜆 and 𝑘𝑘 are the parameters of the Weibull distribution, where 𝜆𝜆 can be replaced by the accelerated failure 
term, 𝑒𝑒𝜷𝜷𝜷𝜷, to incorporate the covariates. 𝜷𝜷 is a vector of coefficients and 𝜷𝜷 is the vector of covariates.  

The probability of a bridge deck deteriorating to a lower CR can be modeled by the cumulative 
density function (CDF). The equation for the CDF of the Weibull distribution, 𝐹𝐹(𝑡𝑡), is shown as: 

𝐹𝐹(𝑡𝑡) = 1 − 𝑒𝑒−�
𝑡𝑡
𝜆𝜆�

𝑘𝑘

 (7) 

The AFT-Weibull model is implemented on the same bridge deck deterioration data and is estimated with 
a python package lifeline considering CTT as the independent variable. Both censored data and uncensored 
data are incorporated by the probability density function and reliability function in the likelihood function 
(Ashraf-Ul-Alam and Khan 2021). The model is well tuned to achieve the highest possible reliability, and 
the parameters are estimated using the maximum likelihood estimation approach as shown in Table 6. 

The results suggest that the district, rebar type, deck width, and total ADT are significant variables 
in predicting bridge deck deterioration. The surface type and member type, which are less important 
variables in the RSF model, were found to be insignificant in the Weibull model as well. Surprisingly, 
length, which was ranked third in the RSF model, was not found to be significant in the AFT-Weibull 
model.  
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The log-likelihood of the final model is -3312.80. A 10-fold cross-validation indicated that the C-
index of the AFT-Weibull model in the training dataset is 72.34%, and the C-index for the prediction of the 
testing dataset is 70.05%. The accuracy of the AFT-Weibull model on the testing dataset is much lower 
than the accuracy of the RSF model, 83.36%, which could indicate that the RSF might be more powerful 
than stochastic models for predicting infrastructure deterioration.  

Table 6. AFT-Weibull model coefficient estimations. 

Attributes Values Coef. SE (Coef.) Z-value p-value 

DISTRICT 4 -0.21 0.11 -1.98 0.05 

DISTRICT 5 -0.46 0.12 -3.77 <0.005 

DISTRICT 6 -1.08 0.13 -8.65 <0.005 

DISTRICT 9 -0.91 0.17 -5.38 <0.005 

DISTRICT 11 -0.97 0.14 -7.11 <0.005 

DISTRICT 12 -0.38 0.27 -1.39 0.16 

STRUC_TYP Concrete reinforced 0.43 0.22 1.97 0.05 

MAIN_MATERIAL_TYPE Prestressed precast concrete -0.49 0.33 -1.5 0.13 

MAIN_PHYSICAL_TYPE Pretensioned 0.54 0.32 1.68 0.09 

MAIN_PHYSICAL_TYPE Rolled sections -0.24 0.13 -1.84 0.07 

MAIN_SPANS  0.04 0.02 1.78 0.07 

MAIN_STRUC_CONFIG Box beam - adj -0.36 0.14 -2.59 0.01 

REBAR_TYPE Bare rebar 0.12 0.1 1.47 0.13 

REBAR_TYPE Galvanized rebar 0.18 0.11 1.66 0.1 

WIDTH  0.01 0 2.03 0.04 

ADT_TOTAL  5.2e-5 0 11.65 <0.005 

Intercept  3.84 0.32 12.18 <0.005 

𝒌𝒌  0.19 0.03 5.69 <0.005 
 
 
DISCUSSION 

Sojourn time vs. CTT 
The present study showed that CTT is more suitable to be the independent variable of bridge deck 
deterioration models compared to sojourn time, which is commonly used in survival analysis. From a 
practical perspective, this is due to the fact that the influence of sojourn time on reliability is compromised 
by the attributes values selection in the bridge design process. Engineers tend to select stronger materials 
or structures for bridges that are expected to experience heavier traffic, which leads to all bridges, regardless 
of the type of construction or materials, having a similar lifespan. Thus, it is difficult to distinguish 
reliability from a temporal perspective. However, the CTT reflects the actual load that a bridge experiences, 
which is the main contributor to deterioration (along with the environment), and thus can differentiate the 
reliability of a bridge more accurately. It is also feasible to use a CTT-based model for a real infrastructure 
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management process, since the traffic load of a bridge is usually closely observed, and the data is easily 
collected during a regular inspection.  

RSF vs. AFT-Weibull 
This study indicated that RSF has a better predictive power compared to the AFT-Weibull model. Another 
benefit of RSF compared to the AFT-Weibull model is that the importance of each feature ranking from 
RSF, shown in Figure 5, is helpful to determine which component is critical to a bridge deck design and 
maintenance. The magnitude of the permutation importance for the RSF is the C-index benefit of the 
corresponding feature. However, the interpretation of the impact of attribute values in RSF is not intuitive. 
On the other hand, the AFT-Weibull model is a typical parametric method, which is simpler and can be 
interpreted more easily. Since the coefficient for each attribute value is estimated, it is more suitable to 
analyze the impact on the reliability of different attributes’ values. Take the coefficient estimations for the 
rebar type variable in Table 5 as an example. The coefficient estimation for bare rebar is 0.12, and the 
coefficient for galvanized rebar is 0.18. Both coefficients have low p-values, 0.13 and 0.10, respectively, 
which denote high confidence levels. Further, variables with larger coefficients represent a longer lifespan, 
hence galvanized rebar is found to be statistically more reliable than the bare rebar, which confirms the 
results found from the analysis of the raw data.  

Overall, even though RSF outperformed the AFT-Weibull model in the respect of prediction 
accuracy, the model selection should be decided based on the research purpose, data quality, and application 
scenario.  

 
 

CONCLUSIONS 
 
This work introduced the random survival forest (typically used in the medical field) into infrastructure 
deterioration analysis and adapted it to bridge deck deterioration modeling. The use of sojourn time or 
cumulative truck traffic as the independent variable is considered. The experiment results suggest that CTT 
is more suitable to measure the reliability process of a bridge deck compared to sojourn time, since the CTT 
reflects that hazard exposure directly. The adapted RSF achieved a much higher predictive accuracy in the 
testing dataset when considering the CTT as the independent variable, 83.36% (C-index), as compared to 
considering the sojourn time as the independent variable, 58.98%. Further, the RSF model considering CTT 
as the independent variable also outperformed a representative stochastic model, the AFT-Weibull model, 
which also uses CTT as the independent variable, 70.05%. The results suggest that RSF has advantages in 
predicting the rank of risks of bridge decks, providing a complete deterioration probability curve, and 
determining the feature importance. The RSF model’s use scenarios are different than stochastic models, 
since the RSF is a non-parametric method with higher predictive ability but lower interpretability of the 
impact of attributes’ values. 

Different enhancements of RSF should be considered for future studies, such as considering 
alternative splitting roles, boosting, bagging, and pruning techniques that are commonly used in the 
traditional random forest. 
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C H A P T E R  3  

Deep Reinforcement Learning-driven 
Inspection and Maintenance Planning 
under Incomplete Information and 
Constraints 

INTRODUCTION AND OVERVIEW 

Optimal inspection and maintenance planning delineates a class of important engineering decision-making 
problems, aimed at supporting the sustainable and resilient operation of systems and networks over their 
lifecycle. Optimality refers to minimizing various societal, environmental, and economic risks, along with 
other operational costs, as these emerge due to the combined consequences of the selected actions of the 
decision-maker and their effects based on the future exogenous deterioration of the environment. Within 
this context, the goal of the decision-maker is to determine an appropriate policy, i.e. an optimal rule of 
sequential decisions over a presumed time frame, which is able to aptly map states and times to intervention 
and observation actions (Frangopol, et al., 2004; Sanchez-Silva, et al., 2016).  

Literature indicates several approaches to solving this problem, from threshold-based nonlinear and 
mixed-integer programming formulations (e.g., in (Bocchini & Frangopol, 2011; Saydam & Frangopol, 
2014; Yang & Frangopol, 2019; Marseguerra, et al., 2002)), to analysis of decision trees (e.g., in 
(Frangopol, et al., 1997; Faber & Stewart, 2003; Straub & Faber, 2005; Luque & Straub, 2019)), and from 
renewal theory (e.g., in (Grall, et al., 2002; Grall, et al., 2002; Castanier, et al., 2003; Rackwitz, et al., 
2005)), to stochastic optimal control (e.g., in (Madanat, 1993 ; Ellis, et al., 1995; Papakonstantinou & 
Shinozuka, 2014; Papakonstantinou, et al., 2018)). These approaches are also applicable to infrastructure 
problems beyond inspection and maintenance planning, such as post-disaster recovery, e.g., in (Bocchini 
& Frangopol, 2012; González, et al., 2016; Nozhati, et al., 2020). Respectively, admissible solution 
strategies to the above approaches span from exhaustive policy enumeration and genetic algorithms to 
gradient-based schemes and dynamic programming. Besides formulations that leverage dynamic 
programming and stochastic optimal control concepts, a common characteristic underlying traditional 
inspection and maintenance planning methods is that the decision-making problem, despite its inherent 
sequential and dynamic nature, is articulated by means of static optimization formulations. As a result, 
many otherwise practical approaches tend to be more susceptible to optimality limitations, especially in 
problems with high-dimensional spaces and long decision horizons, challenges also known as the curse of 
dimensionality and curse of history, respectively (Bellman, 1957; Pineau, et al., 2003). Moreover, many 
solution techniques often lack cohesive and generalizable mathematical capabilities regarding the 
consistent integration of stochastic environments and/or uncertain observation outcomes in the optimization 

 
0 This chapter is largely based on the journal paper: Andriotis, C.P., Papakonstantinou, K.G., 2021, “Deep 
reinforcement learning driven inspection and maintenance planning under incomplete information and constraints,” 
Reliability Engineering and System Safety, 212, 107551- 1:16. 
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process, as well as the incorporation of stochastic or deterministic constraints that need to be satisfied over 
multiple time steps or even the entire operating life of the system.   

To address the above issues, this work follows a stochastic optimal control approach, casting the 
optimization problem within the joint context of constrained Partially Observable Markov Decision 
Processes and multi-agent Deep Reinforcement Learning. POMDPs are able to alleviate the curse of history 
as a result of their dynamic programming principles and to facilitate optimal reasoning in the presence of 
real-time noisy observations (Kaelbling, et al., 1998). Their efficiency in inspection and maintenance 
planning has been thoroughly studied and exemplified in (Papakonstantinou & Shinozuka, 2014; 
Papakonstantinou & Shinozuka, 2014; Papakonstantinou, et al., 2016; Memarzadeh & Pozzi, 2015; Schöbi 
& Chatzi, 2016), among others.  Within the same class of applications, in the confluence of DRL and point-
based POMDPs, the Deep Centralized Multi-agent Actor Critic (DCMAC) approach has been recently 
developed in (Andriotis & Papakonstantinou, 2019; Andriotis & Papakonstantinou, 2019b), an off-policy 
algorithm with experience replay, belonging in the general family of actor-critic approaches (Wang, et al., 
2016; Degris, et al., 2012). DCMAC leverages the concept of belief-state MDPs, a fundamental idea for 
the development of point-based POMDP algorithms, thus directly operating on the posterior probabilities 
of system states given past actions and observations (Shani, et al., 2013). In DCMAC, individual control 
units are centralized in terms of global state information and sharing of policy network parameters; 
nonetheless, they are decentralized in terms of policy outputs. Hence, based on classic Markov decision 
processes formalism, DCMAC provides Decentralized POMDP (Dec-POMDP) solutions (Oliehoek & 
Amato, 2016; Bernstein, et al., 2002) for a setting where the agents representing the various control units 
have access to the entire state distribution of the system, however, having the autonomy to make their own 
choices without being aware of each other’s actions. DRL is extremely efficient in tackling the curse of 
dimensionality stemming from high-dimensional and/or combinatoric state spaces, whereas the 
computational hurdle of exponential scaling of the number of actions with the number of components is 
seamlessly handled by the decentralized multi-agent formulation of the problem, given that decentralization 
enables linear scaling. 

Building upon the above-described DRL concepts in this work, a modified architecture in relation 
to the original DCMAC approach is implemented for the actor. We consider a sparser parametrization of 
the actor, without parameter sharing, i.e., each agent has its own individual policy network. We call this 
architecture Deep Decentralized Multi-agent Actor Critic (DDMAC). Similar approaches exist for various 
cooperative/competitive multi-agent robotic and gaming control tasks (Gupta, et al., 2017; Baker, et al., 
2019). Thorough reviews on state-of-the-art methods and applications can be also found in (Oroojlooyjadid 
& Hajinezhad, 2019; Hernandez-Leal, et al., 2019). Despite the architectural differences with DCMAC, 
DDMAC solves the same Dec-POMDP problem, eliminating, however, inter-agent interactions in the 
hidden layers for the sake of computational efficacy. Based on this numerical approach, this report is 
particularly focused on investigating the effects of incorporating resource constraints and other limitations, 
especially in the forms of budget and lifecycle risk constraints. Depending on the nature of the modeled 
limitations, the constraints can be addressed through either state augmentation or primal-dual optimization 
approaches based on the Lagrangian function of the problem.   

Constrained static optimization formulations for operation and maintenance policies exist in the 
literature, e.g., in (Bocchini & Frangopol, 2011; Rackwitz, et al., 2005; Goulet, et al., 2015; Sørensen, 
2009), mainly reflecting short-term risk, reliability-based, and budget-related considerations. In the case of 
POMDPs, the optimization problem now falls in the category of constrained POMDPs. Constrained Markov 
decision processes have been given model-based solutions with the aid of linear programming formulations 
in (Altman, 1999; Poupart, et al., 2015). Exact POMDP alpha-vector value iteration can be extended to 
constrained problems as well, inheriting, however, the PSPACE complexity of the unconstrained solution 
(Isom, et al., 2008). Unconstrained point-based POMDP algorithms, which are well-suited for inspection 
and maintenance planning of systems with up to thousands of states and hundreds of actions and 
observations (Papakonstantinou, et al., 2016; Papakonstantinou, et al., 2018), have also been extended to 
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constrained problems (Kim, et al., 2011). In multi-component systems, under the assumption of component-
wise independent cost functions, states, and actions, (Walraven & Spaan, 2018) derives constrained 
POMDP solutions through a series of unconstrained solutions controlled by a linear master program. 
Overall, and notwithstanding their principled mathematical descriptions, the above value iteration and 
linear or nonlinear programming formulations are fundamentally hard to extend to high-dimensional 
systems that are of interest in this work.  

In DRL, constraints typically refer to either the parameters of the approximated functions, or the 
cumulative returns related to auxiliary functions of interest (Schulman, et al., 2015; Achiam, et al., 2017; 
Zhang, et al., 2020). The former methods restrain the iterate increment of the policy parameter updates to 
be within a trust region of the Kullback-Leibler divergence between the new and the old policy, thus 
preventing abrupt policy changes and, consequently, training instabilities. In such cases, optimization is 
typically based on surrogates of the objective and constraint functions (Schulman, et al., 2015). The latter 
methods typically aim to protect the agent from unsafe or otherwise undesirable states and choices during 
training or policy deployment. To this end, the objective is optimized with the aid of primal-dual 
formulations, either through trust region concepts, or Lagrangian relaxation, or domain-based manual 
penalization (Achiam, et al., 2017; Tessler, et al., 2018; Peng, et al., 2018). Safe RL formulations similarly 
integrate risk and policy variance in the constraint functions of the problem, or directly intervene in 
exploration to guide training (Garcıa & Fernández, 2015; Chow, et al., 2017). Such “safety” constraints 
can, for example, pertain to the probability of failure over multiple steps and, as such, they reflect soft 
constraints, meaning that they only need to be satisfied in a probabilistic or expected sense. The satisfaction 
of hard constraints, such as budget constraints, is easier to account for in the optimization process through 
state augmentation. Such constraints tend to be relevant for other resource limitations as well (e.g., in cases 
of limited availability of operating crews, inspectors, etc.). In this work, we consider and study both types 
of constraints. 

In summary, in this chapter we consider and optimize DRL-driven, non-periodic inspection and 
maintenance policies in the presence of resource limitations and risk-related constraints. First, the 
preliminaries of the POMDP formulation in inspection and maintenance planning are elaborated, with 
insights in the problem-specific modeling requirements. State updating equations and inspection, 
maintenance, shutdown, and risk cost definitions are presented. It is studied and discussed how the selected 
actions affect the above costs, and which inherent mechanisms drive observational strategies in POMDPs 
are. Theoretical analysis pertaining to risk definitions and related accruable and instantaneous costs is 
presented, along with their relation to classical definitions. The optimization problem is cast within the 
context of decentralized multi-agent DRL control, where agents operate directly on the belief space (i.e., 
the space of posterior system statistics based on past actions and observations). The developed and 
employed DRL approach, DDMAC, is an off-policy actor-critic method with experience replay, modifying 
the original architecture presented in (Andriotis & Papakonstantinou, 2019). The relevant algorithmic steps 
for implementing the above-described decentralized DRL framework are provided, based on state 
augmentation for hard constraints and Lagrangian relaxation for soft constraints. Quantitative investigation 
is conducted based on a stochastically deteriorating multi-component system. Numerical experiments 
include evaluation of different baseline policies, and different budget and risk constraint scenarios. The 
resulting evolution of various system metrics, pertaining to risk, reliability, inspection, and intervention 
choices over the system operating life, is parametrically studied and discussed based on the learned policies.  
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POMDPS IN INSPECTION AND MAINTENANCE PLANNING 

The optimization problem  
The goal of the decision-maker (agent) in a lifecycle inspection and maintenance optimization problem is 
to determine an optimal policy π = π* that minimizes the total cumulative future operational costs and risks 
in expectation: 
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where ct = c(st,at,st+1) is the cost incurred at time t by taking action at
 ϵ A, and transitioning from state st

 ϵ S 
to state st+1

 ϵ S; ot  ϵ  Ω is an observation outcome; γ ϵ [0,1] is the discount factor translating future costs to 
current value; b0 is an initial distribution over states (or initial belief); Vπ is the value function, which 
expresses the total discounted cost given a state or a belief under policy π; and T is the length of the planning 
horizon. Planning horizon T can be either finite or infinite. A finite horizon problem can be solved as an 
infinite one, through proper formulation of the problem, i.e., through augmenting the state space with time, 
and considering an absorbing state at the final time step (Bertsekas, 2005).  

Policy π is a rule according to which actions are taken by the decision-maker at different time steps, 
and it can be, at best, a map from histories of actions and observations to actions, π: At-1× Ω t →A. The 
policy function belongs to a space, π ϵ Πc, which contains all possible policies that are admissible under the 
existing constraints of the problem. Πc is a subset of Π, which is the policy space of the unconstrained 
problem. From the mapping a policy function conducts, it can be observed that the number of possible 
policies can easily become immense, even in problems with small planning horizons. Also known as the 
curse of history, this problem is optimally tackled by dynamic programming and POMDPs as explained in 
detail in the next section. Another approach to attack this complexity, however, often at the expense of 
solution efficiency, is to exploit problem-specific characteristics and employ simplified assumptions, 
including approaches that impose action periodicity, policy uniformity among components, component 
prioritization, ranking, or clustering (Grall, et al., 2002; Nicolai & Dekker, 2008; Memarzadeh, et al., 2016; 
Bismut & Straub, 2018; Rokneddin, et al., 2013; Zhang & Alipour, 2020). Particularly in inspection 
planning, periodic inspection visits or non-periodic inspections that exploit similarity and/or prioritization 
of components is typical for deteriorating structural systems (Luque & Straub, 2019; Bismut & Straub, 
2018).  

Policy π can also be stochastic, in which case it is a mapping to a probability distribution over 
actions, i.e. π: At-1× Ω t →P(A). It can be shown under loose regularity conditions about the cost function 
that the optimal policy in a Markov decision process is deterministic (Putterman, 1994). However, in 
general and especially in the presence of constraints, the optimal policy is more broadly described by 
functions accounting for stochastic mappings (Altman, 1999). 

Mapping posterior state distributions to actions 

In a POMDP environment, transition from state st
 =s to state st+1

 =s' is Markovian. Detaching the 
effect of the maintenance action from the environment transition (natural deterioration), we can define an 
intermediate state, st

a =sa ϵ S. This state succeeds s, with probability Pr(sa|s,a), and reflects the system state 
immediately after maintenance and before the environment transition. This distinction is important to help 
us better define and quantify the risk in the next section, and additionally allows consideration of the 
probability of unsuccessful or partially successful  actions. State s'  succeeds sa with  probability Pr(s'|sa,a),  
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after the environment transition, i.e., s' = sa,e. Owing to the Markovian property, given a pair (s,a), the 
probability distribution of s' can be fully defined, regardless of the prior history of actions and states as: 

( )Pr ' | , Pr( ' | , )Pr( | , )
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a a
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s s a s s a s s a
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Similarly, the cost at a certain time step can be expressed as: 
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where, for notational brevity, c on the right-hand side pertains to cost that additionally depends on sa. State 
augmentation can be applied if higher-order temporal dependencies exist regarding the history of states 
and/or actions prior to t, or the environment is characterized by non-stationarity (Bertsekas, 2005; 
Papakonstantinou & Shinozuka, 2014). In POMDPs, at each time step, states are hidden to the agent, and 
are only perceivable through the noisy observation ot=o ϵ Ω. Observation o depends on the state of the 
system and the respective action at the current step, and is defined by probability Pr(o| s, a). The entire 
process described above is depicted in the network of Figure 7.  
 

 

Figure 7. POMDP diagram in time, including intermediate states  
occurring after actions and before environment transitions. 

As a result of the structure of POMDPs, optimal policy π* can be defined, without any loss of 
information, as a function of belief bt=b ϵ B: S→P(S), which is a sufficient statistic of the entire history of 
previous actions and observations, up to time t. Belief b is thus the posterior probability distribution over 
states, given the previous belief, and the current transition, action, and observation. Hence, the belief at 
time t+1, bt+1=b'=ba,e,o, is computed by the Bayesian update: 
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where probabilities b(s), for all s ϵ S, form the |S|-dimensional belief vector b. The denominator of Eq. (4) 
Pr(o'|b,a), is the standard normalizing constant: 
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Similarly to sa, belief ba in Eqs. (4) and (5) is the intermediate belief, right after the maintenance action and 
before the environment transition and observation, defined as: 
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In the special case that the environment is fully observable, i.e. o= s, observation specifies exactly 
which one of the belief vector entries is 1, assigning 0 otherwise. This defines an MDP environment and, 
accordingly, Pr(o'|b,a) reduces to Pr(s'|b,a), which is the transition probability of MDPs given the current 
state distribution. Following this remark, it is apparent that Pr(o'|b,a) holds transition probability semantics 
for the belief space, B, hence a POMDP can be seen as a belief-MDP, where now, however, states are the 
belief vectors. Accordingly, the transition between beliefs is given as: 

( ) ( )'
'

Pr ' | , Pr ' | ,
o

a o aδ
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= = ∑ b xb x b b  
(7) 

where δij is the Kronecker delta, i.e. δij=1 if i=j, 0 otherwise.  

This allows us to write the optimality equation, also known as the Bellman equation (Bellman, 
1957), in the belief space as: 

( ) ( )
( ){ }

( ) ( )
'

min ,

min Pr ' | ,

a A

ba A o

V HV

Q a

c o a V
Ω

γ

∈

∈
∈

=

=

 
= + 

 
∑

b b

b

b b
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where V(b)=Vπ*(b) is the optimal value function, representing the total lifecycle cost under the optimal 
policy π* given an initial belief b, H is the Bellman backup operator, Q is the optimal action-value function, 
and cb is the expected cost at belief b, defined as: 
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Operator H is a contraction with unique fixed-point V(b). It has been shown that the POMDP cost value 
function described by the Bellman equation in Eq. (8) is piece-wise linear and concave (convex for the 
maximization problem) at every time step, composed of linear hyperplanes, also called the alpha-vectors 
(Sondik, 1971). Each alpha-vector corresponds to an inspection and maintenance action (Papakonstantinou 
& Shinozuka, 2014; Papakonstantinou, et al., 2016). 

Despite its analogies with MDPs, Eq. (8) is hard to solve exactly through standard MDP-based 
approaches, e.g., through value or policy iteration. However, there are numerous efficient approximate 
solution procedures along the lines of point-based algorithms (Shani, et al., 2013). Point-based algorithms 
sample a subset of the reachable belief space, starting from an initial root belief, thus making value iteration 
scale linearly with the cardinality of this subset. DRL is used for solving Eq. (8) in this work, using the 
point-based belief MDP concept combined with deep function approximations and actor-critic training 
(Andriotis & Papakonstantinou, 2019).  

Risks and costs 

Cost at different time steps for a selected action can be decomposed into inspection cost, cI, maintenance 
cost, cM, and damage state cost, cD. In addition, it is often important for the decision-maker to account for 
the possibility of additional losses due to intentional system shutdowns, cS, which may occur not as a 
consequence of damage, but rather as a result of the selected actions. Accounting for this as well, the total 
cost at each decision step can be generally expressed as: 

( ) ( ) ( ) ( ) ( )
maintenan. cost shutdown cost inspec.cost damage state cost

, , , ' , , ', , 'a a
M S I Dc s a s s c s a c s a c s a c s sγ γ= + + +
  



 
(10) 

Using Eq. (10) in Eq. (9), the expected inspection, maintenance, and shutdown costs can be written as: 
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Although Eq. (11) provides a broad description of the cost function, it is often appropriate to adopt the 
hypothesis that inspection and maintenance actions affect the respective costs independently, and are also 
independent of the system state (this hypothesis is stronger for inspections, since certain maintenance 
actions may depend on the extent of damage in the system): 

( ) ( ) ( )
( ) ( ) ( )

,

,

',

,
I b I I I

M b M M M

c s a c a c a

c s a c a c a

= =

= =
 (12) 

where aI ϵ AI is the selected inspection action and aM ϵ AM  is the selected maintenance action. Under this 
distinctive consideration of actions, the total action can be defined as a ϵ A=AI×AM. We will refer here to 
no inspection and no maintenance actions as trivial inspection and trivial maintenance actions, respectively. 
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Trivial actions may also refer to routine maintenance and inspection actions, which are actions that are 
always taken at every time step, thus their costs do not affect the optimization process. Similarly to Eq. 
(12), it is also reasonable to assume in many problems of inspection and maintenance planning that 
scheduled shutdowns will be primarily triggered by maintenance actions only, namely: 

( ) ( ), ,S S Mc s a c s a=  (13) 

Damage state cost cD translates various losses associated with the damage states of the system to 
cost units. These can be grouped into two types of losses, which we will refer to as instantaneous losses 
and accruable losses. Instantaneous losses refer to costs incurred upon arrival at a damage state and do not 
continue to be collected for as long as the system sojourns this damage state. In the case of a failed civil 
engineering structure, for instance, such costs can be related to capital-related losses, which occur at the 
time step at which the structural system transitions to the failure state. This cost is collected once over the 
operating life, unless the system is restored and fails again. Accruable losses, on the other hand, refer to 
costs collected for as long as the system sojourns a certain damage state, regardless of which damage state 
it transitioned from. In the previously mentioned example of a failed civil engineering structure, such costs 
can be related to economic losses due to downtime, which are, of course, not instantaneous but accrue over 
time, until the system is restored to an operating status. Following this distinction, the damage cost 
component of Eq. (10) is written as: 

( ) ( ) ( )'
, ' ' 'a

a acc inst
D D Ds s

c s s c s d c s= +  (14) 

where [dij]i,j ϵ S is the adjacency matrix pertaining to damage states, as this can be derived by state 
connectivity according to available actions. That is, if there is an action such that state j is an immediate 
successor of i, then dij=1. For i=j, dij=0. In deteriorating environments, it commonly happens that states are 
ordered; that is, transitions from sa to s' form an upper-triangular transition matrix, meaning that the system 
can only transition to a worse state, or at best remain at the same one, due to environment effects. In this 
case, the adjacency matrix will be strictly upper-triangular. 

As implied by Eq. (14), the cost of accruable losses is a function of the next state, s', whereas the 
part of instantaneous losses depends on the current state after the effect of the maintenance action, sa, and 
the next state.  The expected costs in Eq. (14), which is required to solve Eq. (8), with the aid of Eq. (9), 
give the step or interval risk as: 
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Using Eq. (15), risk is defined as the expected cumulative discounted damage state cost over the lifecycle: 
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=
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Quantification of risk is only relevant to the post-maintenance configuration of the system, thus from sa. 
Note that if risk is quantified from s instead, it can take unrealistic negative values, since state s' can be of 
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lower damage. To better understand Eq. (16), one can consider a case where the system may suffer only 
instantaneous losses due to failure with cost cF. In this case, Eq. (16) reduces to: 

( )0: 1 0: 0: 0: 0:| , | ,
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T t t t t t t

T
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F F o F a o F a o
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+

=

 
ℜ = − 
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where PFt is the probability of failure up to time t. The specialized definition of risk provided by Eq. (17) 
follows standard risk and reliability assumptions and is well-studied in inspection and maintenance planning 
(Luque & Straub, 2019). The proof that Eq. (16) reduces to Eq. (17) under the above-stated assumptions is 
presented in Appendix A of (Andriotis & Papakonstantinou, 2021). This work employs the risk definition 
of Eq. (16) instead of that of Eq. (17), as it facilitates a broader consideration of losses related to multiple 
system states as in (Andriotis & Papakonstantinou, 2021).  

Similarly, the other step costs of Eq. (10) assume the following expected cumulative discounted 
values over the lifecycle: 
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(18) 

Hence, the optimal POMDP value with its optimality equation described in Eq. (8) is: 
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Thus, overall, the problem of Eq. (1) consists in jointly minimizing the above lifecycle cumulative 
discounted costs. 

 
OPERATING UNDER CONSTRAINTS 
 
We consider the following form of the stochastic optimization problem of Eq. (1): 
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 (20) 

where Gh,k and Gs,m are the hard and soft constraints, respectively, gh,k and gs,m are their respective auxiliary 
costs (e.g. cM, cI, cS, cD, or else), and αh,k, αs,m are real-valued scalars. The form of constraints in Eq. (20) is 
amenable to a broad class of constraint types that are relevant to infrastructure management. For example, 
hard constraints can model a great variety of fixed-resource allocation and control action availability 
problems, such as problems referring to strict budget limitations. In turn, soft constraints, of the Eq. (20) 
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form, can model a great variety of risk-based constraints. More details about these can be found in Section 
3.2. The term soft constraints, although not standard in stochastic optimization and optimal control 
literature, is used here to distinguish from the term hard constraints, indicating that the underlying 
constraints do not need to be strictly satisfied, but are rather imposed in an expected or probabilistic fashion. 

Hard constraints can be straightforwardly taken into account through state augmentation. On an 
interesting remark, in one of his notes on dynamic programming under constraints in 1956 (Bellman, 1956 
), R. Bellman mentions that this approach may not be favored since “due to the limited memory of present-
day digital computers, this method founders on the reef of dimensionality.” However, this restriction has 
been widely lifted today, whereas DRL has diminished the effects of the curse of state dimensionality even 
further. Thus, state augmentation is followed for the hard constraints here. Note that in the special case 
where functions gs,m are deterministic, soft constraints become hard. However, soft constraints are not 
practical to consider through state augmentation, since one should track the entire distribution of the 
cumulative discounted value of gs,m. Therefore, probabilistic constraints are addressed here through 
Lagrangian relaxation (Bertsekas, 1999). Based on the above, the optimization problem is restated as: 
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where variables ykt track the discounted cumulative value of the function related to hard constraints, gh,k, up 
to time step t-1, and c  is the cost function also considering ykt. Variables ykt are upper bounded by ah,k. 
Lagrange multipliers, λm, constitute the dual variables of the max-min dual problem, they are positive 
scalars, and are associated with the soft constraints. 

Budget constraints 
Depending on the operational and resource allocation strategy of the management agency, available funding 
for inspection and maintenance must comply with certain short-term or long-term goals related to a specific 
budget cycle duration, TB. Namely, in the extreme case of a short-term budget cycle duration, budget caps 
exist for every decision step (e.g., annual budget), whereas in the extreme case of a long-term budget cycle 
duration, there is a budget cap pertaining to the cumulative inspection and maintenance expenses over the 
entire lifecycle of the system, i.e., TB=T. The cumulative cost of inspection and maintenance actions over 
period TB is given for: 

( ) ( ),
th M Ig s a c cτ τ τγ ∈Λ= + 1  (22) 

( )( / , / 1t B B B Bt T T t T T Λ = +         (23) 

where x    is the integer part of x. For a given budget cap αh, the maintenance and inspection costs at each 
time step read: 
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(24) 
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According to Eqs. (22)-(24), inspection and maintenance costs are accounted for only at the current budget 
cycle, and if the currently selected action does not violate the budget cap. The total cost at each time step 
of Eq. (10) is accordingly rewritten as: 

( ) ( ) ( ) ( )1 1, , , ,a
t M t t I t t S t t D t tc c s a c a s c s a c s sγ γ+ += + + +  (25) 

Transition and observation probabilities are also affected by the presence of the budget constraints as: 
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where ao is the trivial decision, where no inspection and no maintenance are performed. As indicated by 
Eqs. (21)-(26), incorporation of budget constraints can be accomplished by accounting for new state 
variables y=yt. This way the agent is able to reason about control actions based on the available budget, αh 

- yt, at each time step of the decision process. In the case of step-wise budget constraints, i.e., TB=1, this 
state augmentation is not necessary, since the agent does not need to track any inspection and maintenance 
expenses made in the past, thus having the entire amount of αh at its disposal for every single step.  

As opposed to state variables st, new variables yt are fully observable. In this regard, the problem 
can also be seen as a mixed observability Markov decision process, which admits favorable state 
decompositions and can be solved by value iteration algorithms in settings with moderate dimensions 
(Papakonstantinou, et al., 2018). In this case, constrained value iteration based POMDP solution procedures 
devised for constrained problems can be employed to drive the optimization process (Isom, et al., 2008; 
Kim, et al., 2011; Walraven & Spaan, 2018). However, as for the unconstrained case, such formulations 
can manifest limitations related to efficient scaling in systems with large state and action spaces, like the 
systems that are typically encountered in the class of sequential decision-making for infrastructure and 
networks.  

Risk-based constraints 
For notational efficiency of the present section, we introduce the following random variables: 
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where MJ π , for example, accumulates total costs, related to maintenance actions over the lifecycle, and 

0: 0: 0:, , [ ]
T T Ts o a M MJ Cπ π= according to the definitions of Eq. (11). 

We are now interested in incorporating constraints that bound risk over the system lifecycle. The 
risk-related random variable based on Eqs. (16) and (27) is DJ π . Thus, the respective constraint function 
obtains the following form, for gs=cD in Eq. (20): 
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It should be noted that, although the budget constraints of focus in this work are not soft, budget constraints 
can also be expressed through Gs constraints, satisfied in expectation, depending on the modeling needs of 
the problem, as in Eq. (28). Any other costs as introduced in Eq. (10) can be considered in the same logic 
as well. 

Constraints of the generic Gs form are also the chance or probabilistic constraints, which bound 
the probabilities of certain quantities or events (Garcıa & Fernández, 2015; Chow, et al., 2017). As such, if 
one wants to bound the probability of the optimal policy exceeding a certain lifecycle cost threshold Jcr, 
one may apply the following gs function for any iJ π similarly to Eq. (28): 

i cr
s t T J J

g π= >
= ⋅1 1  

(29) 

where the second indicator signifies the cumulative cost constraint violation, and the first one ensures that 
this is taken into account once, at the end of the planning horizon. Taking the expectation of cumulative 
value of the constraint function of Eq. (29), we have: 
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Considering Eq. (30), if αs =1, we end up with a hard constraint requirement, i.e., i crJ Jπ > . It is thus 
obvious that hard constraints can also be seen as a limiting case of soft constraints. 

From a stricter reliability standpoint, many decision problems are interested in bounding the 
probability of failure (i.e., the probability reaching a failure state sF from a non-failure state) over the system 
operating life. In this case, we just need to set 0per

Dc = , γ=1, and 
1t F

inst
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PFT is the probability of failure up to the end of the lifecycle t=T. Scalar αs in Eq. (30) and (31) is a valid 
probability designating the (1 - αs) percentile of risk and probability of failure, respectively, the decision-
maker is willing to tolerate.  

Other relevant constraint definitions in stochastic optimization and constrained Markov decision 
processes literature include constraints on the value-at-risk and conditional-value-at-risk (Uryasev & 
Rockafellar, 2002; Chow, et al., 2017) (with the former coinciding with probabilistic constraints), 
constraints on the policy variance (Di Castro, et al., 2012; Prashanth & Ghavamzadeh, 2016), as well as 
constraints whose satisfaction is implicitly encouraged through reward-based penalization (Smith, et al., 
1995).  
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Constrained control with deep reinforcement learning 
In recent work by the authors (Andriotis & Papakonstantinou, 2019; Andriotis & Papakonstantinou, 2019b), 
the Deep Centralized Multi-agent Actor Critic approach has been proposed for management of large 
engineering systems, shown to significantly outperform traditional maintenance and inspection decision 
rules. DRL approaches in general, either in the form of actor-critic, or policy gradients, or Q-learning, e.g. 
(Andriotis & Papakonstantinou, 2019; Rocchetta, et al., 2019; Liu, et al., 2020; Skordilis & Moghaddass, 
2020), offer several computational advantages in high-dimensional state spaces, due to the fact that function 
parametrization over the state space alleviates the need for exhaustive state exploration. In addition, 
DCMAC concurrently accounts for partial state observability and high-dimensional action spaces. Its multi-
agent formulation treats system control units as individual agents making decentralized decisions based on 
shared/centralized system information and actor-network hidden layer parameters. Control units are defined 
in reference to system parts for which separate actions apply at each decision step, and can be either 
individual system components or greater subsystem parts comprised of multiple components. As such, one 
control unit has at least one component, and one component may belong to more than one control units. 
The system policy function is written as: 
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where a is a vector of actions and b̂  is a 2D matrix, such that: 
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where a(i) is the action of control unit i, b(j) is the belief of system component j, NCU is the number of control  

units, and NC is the number of system components. 
The policy functions of Eq. (32), as well as a centralized system Lagrangian value function are 

parametrized with the aid of deep neural networks as: 
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(34) 

Parameters
( )i
πθ , θV are real-valued vectors, and can either vary or be shared among control units. In either 

case, each control unit’s policy is conditioned on the global belief and the budget-related states. Note that 
here we have a separate policy network for each agent, as denoted by superscript i in the policy parameters 
of Eq. (37), thus a completely decentralized actor parametrization is used. To distinguish this from the 
original DCMAC architecture, we call this Deep Decentralized Multi-agent Actor Critic (DDMAC). As 
discussed in Section 1, both provide decentralized POMDP policy solutions. The respective architectures 
are shown in Figure 8. In this figure, four components are depicted, and each component is a control unit, 
thus NCU=NC. DDMAC is trained based on off-policy experiences retrieved from the  replay memory or  
replay  
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Figure 8. Constrained Deep Decentralized Multi-agent Actor Critic (DDMAC) architecture. 

buffer, as agents interact with the environment. Thus, the replay memory is a stack of transition tuples.  
The off-policy gradients of the policy function and the value function are computed by importance 

sampling as: 
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where w is the importance sampling weight with sample distribution a policy μ retrieved from the 
experience replay and target distribution the current policy. Aπ

λ  is the advantage function, which is herein 
approximated by the temporal difference: 
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Algorithm 1 Constrained Deep Decentralized Multi-agent Actor Critic  
Initialize replay buffer 
Initialize actor, critic, and dual parameters [ ]( )

11
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V m mjπ λ
==

  θ θ    

for number of episodes do 
    for t=1,…,T do 
           Select action ta at random according to exploration noise 
           Otherwise select action ( )( )ˆ~ | , ,

CUN
j

t t j t t
j

ππ = ⋅ a μ b y θ   

           Estimate costs ,b t bc c= , , ,s mt s mg g=  given ˆ
tb  and  at 

           Observe ( )( ) ( ) ( )
1 1~ | , ,l l l

t t t t to p o+ + b y a  for 1,2, , Cl N= 
   

           Compute beliefs ( )
1

l
t+b  for 1,2, , Cl N= 

 
           Store tuple ( ), , 1 1 1

ˆ ˆ, , , , ,[ ] , ,M
t t t t b t s mt m t tc g = + +b y a μ b y  to replay buffer  

     end for 
     Sample batch ( ), , 1 1 1

ˆ ˆ, , , , ,[ ] , ,M
i i i i b i s mi m i ic g = + +b y a μ b y from replay buffer 

     If ˆ
ib is terminal state ( ), , ,

1

ˆ , |
M

V
i b i m s mi i i

m
A c g Vπ π
λ λλ

=

= + −∑ b y θ   

    Otherwise ( ) ( ), , , 1 1
1

ˆ ˆ, | , |
M

V V
i b i m s mi i i i i

m
A c g V Vπ π π
λ λ λλ γ + +

=

= + + −∑ b y θ b y θ                

    Update actor parameters ( )j
πθ according to gradient:        

      ( )( ) ( )
( ) ( )

,
1

ˆlog | , ,
CU

j i

N
j j

i j i i i i
i j

V w a A
π π

π π
λ π λπ

=

 
∇ ∇ 

 
∑ ∑θ θ b y θ   

    Update critic parameters Vθ according to gradient:   
       ( ) ,

ˆ , |V
V

V
i i i i

i
V w V Aπ π π
λ λ λ∇ ∇∑θ θ b y θ

  

    Update dual variables mλ , m=1,…,M, based on current policy return,    
    according to gradient:   

       , ,
0

m

T
t

s mt s m
t

V gπ
λ λ γ α

=

∇ −∑   

end for 

 

The gradient of dual variables λm is easily computed as (Tessler, et al., 2018): 
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Dual variables are updated through on-policy samples, since off-policy weighted sampling of multiple time 
steps produces high-variance estimators that may trigger training instabilities. Algorithm 1 describes the 
aforementioned implementation steps. 

 
RESULTS 

Environment details 
A stochastic, non-stationary, partially observable 10-component deteriorating system is considered, 
operating over a lifecycle period of 50 decision steps (years), with a discount factor of γ=0.975. For civil 
engineering systems, discount factors typically range from 0.93 to 0.98. Higher discount factors make the 
decision problem more challenging, in the sense that they increase the effective horizon of important 
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decisions. Links between components create the system shown in Figure 9. It is assumed that link operation 
depends solely on the operating status of the respective components. Overall system connectivity is 
determined by the connectivity of nodes A and B. 

Each component has independent deterioration dynamics. These are expressed by 4x4x50 three-
dimensional transition matrices, corresponding to 4 damage states (intact, minor damage, major damage, 
severe damage), combined with 50 deterioration rates, as many as the decision steps of the system lifecycle. 
Component transitions are given in Tables 7 and 8. Component transition parameters for the underlying 
hidden Markov models are assumed to be known or already learned, thus model uncertainty is not 
considered in this example. For learning of (hidden) Markov models and details on forming and maximizing 
the respective likelihood functions based on load-conditioned structural data, the interested reader can refer 
to (Andriotis & Papakonstantinou, 2018; Andriotis & Papakonstantinou, 2018), among various sources. In 
the case of latent states, as shown in the previous works, expectation-maximization or recurrent neural 
networks can be used. Parameter  inference  with hidden  Markov  models can be  efficiently applied as  in  

 
 
 
 
 
    
 
   
    
   
                                    

Figure 9. Multi-component deteriorating system. The system fails when connectivity between nodes 
A and B is lost. Major costs are incurred when the system fails. Minor costs are incurred for 
combinations of failed series subsystems. Types I-III refer to the severity of the deterioration model, 
from less to more severe, respectively. 

(Papakonstantinou, et al., 2022; Amir, et al., 2021, In Print). Different failure probabilities are considered 
based on each one of the above damage states, as shown in Table 9. Thus, the system behavior as a whole, 
is described by the Bayesian network of Figure 10. The examined system has been kept application-
agnostic, being however assigned general deteriorating characteristics that can, among others, resemble 
formations of transportation networks, where components 1-10 are deteriorating bridges controlling the 
functionality of the respective links (e.g., road segments), or parallel-series reliability block diagrams that 
can be applied to multi-member/unit structures such as a structural truss or a bridge-type diagram of an 
electrical circuit. 

Table 7. Component initial damage state transition probabilities for deterioration  
model Types I, II, and III. 

Deterioration 
Model p12 p13 p14 p23 p24 p34 
Type I 0.0129 0.0072 0.0008 0.0102 0.0038 0.0092 
Type II 0.0311 0.0096 0.0014 0.0283 0.0057 0.0281 
Type III 0.0428 0.0229 0.0033 0.0406 0.0095 0.0328 
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Table 8. Component final damage state transition probabilities for deterioration  
model Types I, II, and III. 

Table 9. Component failure probabilities for different deterioration types and damage states. 

 
 
Further details on consistently coupling inference of dynamic Bayesian networks, both in the state 

and parameter space, with POMDPs for deteriorating structures, can be found in (Morato, et al., 2022; 
Morato, et al., 2019), whereas formulations without parametric updates also exist in (Morato, et al., 2022). 
The final state vector for each component is s(i)=(x(i),τ(i),f (i),t),  where x(i) is  the  damage  state, τ(i) is the 
deterioration rate, f (i) is a  binary failure indicator, and t is the decision time step (t is the same for all 
components). Vectors s(i) define the input space of the neural networks, thus naturally instilling non-
stationarity in the learned policy. Failure is considered an absorbing state. Hence, we assume that when a 
component fails it remains failed at the next step, as long as no restorative action is taken. This allows us 
to augment the component state space, finally obtaining 5x5x50 transition matrices. 

 
 

 
Figure 10. Dynamic Bayesian network of multi-component deteriorating system in time. 

We consider three types of available maintenance actions; AM ={no-repair, partial-repair, 
restoration/replacement}. There are also two types of available inspection actions; AI ={no-inspection, 

Transition 
Probability p12 p13 p14 p23 p24 p34 

Type I 0.0618 0.0512 0.0036 0.0905 0.0091 0.0768 
Type II 0.0862 0.0868 0.0051 0.1219 0.0121 0.1091 
Type III 0.1347 0.0669 0.0098 0.1665 0.0244 0.1462 

Damage State Intact Minor Major Severe 
Type I 0. 0019 0. 0067 0. 0115 0. 0177 
Type II 0. 0028 0. 0076 0. 0163 0. 0219 
Type III 0. 0088 0. 0210 0. 0449 0. 0564 
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inspection}. Accordingly, to allow for utmost diversification between component policies, each component, 
which herein defines a separate control unit, is assigned five available inspection and maintenance actions, 
based on the combinations of the above-mentioned sets, i.e., a(i) ϵAM×AI \ (restoration/replacement, 
inspection). The (restoration/replacement, inspection) action is excluded from the set of available actions, 
as it is assumed that whenever a system component is replaced, thus returning to an as-good-as-new 
condition, a decision for inspection is strictly suboptimal. No-repair costs are null, whereas 
restoration/replacement costs are the same for all components. Partial-repair costs are 7.5%, 10%, 15% of 
the component replacement cost, for component Types I, III, and II, respectively. Inspection costs are the 
same for all components, at 1.5% of the component replacement cost. Partial-repairs send components one 
damage state back without changing the deterioration rate, restorations/replacements send components to 
the initial damage state and deterioration rate; whereas no-repairs have no effect on the damage state and 
deterioration rate. Partial-repairs have no effect on failed components and are considered to have been 
completed before the next environment transition. When restorations/replacements are chosen, these are 
completed at the end of the next time step, negating the deterioration transition during that step. Thus, in 
this case, the next state is the intact one with certainty. 

If an inspection action is taken, observation probabilities are given by the following observation 
matrices: 

( ) ( )

( )

( ) ( ) ( )
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Observation matrices depend on state discretization and presumed measurement noise or estimated model 
errors (Madanat, 1993 ). Failure is considered to be a self-announcing event, hence, component (5,5) of the 
observation matrix of Eq. (39) is 1. Accordingly, if no inspection is taken, the observation matrix reads: 

( ) ( )

( )

( ) ( ) ( ) 1 1 1 1
Pr | , { }

1
i

i

T
i i i

M o
s S

o s a A no inspection Ω∈
∈

  ∈ × − =     
 (40) 

System failure, i.e., loss of connectivity between nodes A and B, is described by random variable 
fs. Random variable fs assumes four values associated with events E0: all links available, E1: 25% of links 
failed, E2: 50% of links failed without system failure, and Fs: system failure. A link is failed if at least one 
component is failed. We can thus consider the series subsystems, controlling the link failures, l1={1,2,3}, 
l2={4,5}, l3={6,7}, and l4={8,9,10}. Their failure events are accordingly described by events Fl,1, Fl,2, Fl,3, 
and Fl,4. Based on the above, it can be derived that the system failure probability is: 

( ) ( ) ( ) ( ) ( ) ( )
4

,1 ,3 ,2 ,4 ,
1

Pr Pr Pr Pr Pr Prs l l l l l i
i

F F F F F F
=

= + −∏  (41) 

The corresponding non-failure events of interest, E0, E1, E2, are defined as: 
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Accordingly, the probabilities of events E0, E1, E2 are computed as: 
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Accruable and instantaneous losses due to failure are equivalent to 2.5 and 50 times the system rebuild cost, 

respectively, i.e., 2.5
s

acc
F rebc c= ⋅  and 50

s

inst
F rebc c= ⋅ . Similarly, we consider accruable and instantaneous losses 

incurred when 25% and 50% of system links are not available (i.e., at least one of their respective 
components is at the failure state). These losses are incurred if events E1, E2 occur, respectively, and are  

quantified in cost units as 1
0.05acc

E rebc c= ⋅ , 2
0.25acc

E rebc c= ⋅ , 1
1inst

E rebc c= ⋅ , 2
5inst

E rebc c= ⋅ . In the case of 
transportation networks, for example, such accruable losses may refer to time delays and/or additional user 
costs due to detours, whereas such instantaneous losses may pertain to capital loss due to asset failures 
related to those links. 

Based on the above losses, the fact that system events are fully observable, and following the risk 
definition of Eq. (16), the interval risk reads:  
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Apart from the above losses, additional costs are included in the analysis, pertaining to scheduled system 
shutdowns. Those come as a result of different action combinations on different system components. That 
is, considering that non-trivial maintenance actions require some degree of component non-operability for 
completion during a time step, events Ea0, Ea1, Ea2, and Fas can occur, in analogy to events E0, E1, E2, and 
Fs. Those losses are only incurred if the system would be otherwise in an operating condition (i.e., not 
failed). Events and their probabilities are similarly defined as in Eqs. (42)-(44), whereas respective costs 
are the same as the accruable losses due to events E0, E1, E2, and Fs.  

Experimental setup 
For the purposes of this numerical investigation, two sets of analyses are conducted. The first set considers 
a budget cycle period of TB = 5. Each budget period shares the same budget cap, and 9 different levels of 
budget constraints are considered, which are given as functions of the system rebuild cost, {5, 7.5, 10, 12.5, 
15, 17.5, 20, 25, 30}% creb. For the second set of analyses, 9 different levels of lifecycle risk constraints are 
considered, i.e., {1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3.25} creb. In addition to the above analyses, the 
unconstrained policy is also learned. 

For training, the Keras deep learning python libraries are used with Tensorflow backend. For all 
analyses, the actor networks consist of two fully connected hidden layers with 50 Rectified Linear Unit 
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activation functions each, for all 10 components. No parameters are shared among component actors, and 
each control unit has a 5-dimensional softmax output corresponding to the cardinality of AM×AI \ 
(restoration/replacement, inspection). The critic network also consists of two fully connected hidden layers 
with 150 ReLU activations each. The critic has a one-dimensional linear output, which approximates the 
POMDP Lagrangian value function of the entire system. 

The Adam optimizer (Kingma & Ba, 2014) is utilized for stochastic gradient descent on the 
networks parameter space, with learning rates being gradually adjusted from 1E-3 and 1E-4 to 1E-4 and 
1E-5 for the critic and actor, respectively. The learning rate of Lagrange multipliers is set to 1E-5. The size 
of the experience replay is set equal to 300,000 and an exploration noise linearly annealed from 100% to 
1% is added at the first 2,500 episodes of the training process.  

The main factors influencing the computational cost are the sizes of the actor and critic networks, 
and the sample complexity of the learning scheme, which dictates the number of simulator calls. The depth 
and width of the hidden layers grow with the dimensions of state and action spaces (inputs and outputs, 
respectively), and the user is generally advised to decide about network size and hyperparameters on a 
problem-to-problem basis.  

All analyses were run on an Intel Xeon Platinum 8260 CPU at 2.40GHz. DRL solutions required 
approximately 4 days to exceed the best risk-based baseline, presented in the next section. This time is 
comparable to the computational cost associated with obtaining the optimal parameters of this baseline 
through standard brute-force evaluation of possible policies. 

DRL solutions and baseline policies 
To verify the quality of DDMAC solutions, we construct and optimize various baseline policies, 
incorporating well-established condition- risk-, and time-based inspection and maintenance assumptions, 
which are also combined with periodic action considerations, as well as component prioritization 
approaches. These baselines are: 

• Fail Replacement (FR) policy. No inspections are taken.  If a component fails, it is immediately replaced. 
No variable is optimized.  

• Age-Periodic Maintenance (APM) policy. No inspections are taken, whereas maintenance actions are 
taken based on the age of components.  Two maintenance ages are optimized: periodic age for 
component partial-repair and periodic age for component restoration/replacement.  

• Age-Periodic Inspections and Condition-Based Maintenance (API-CBM) policy. Age-based inspections 
are taken for all components, based on each component’s age. At inspection times, maintenance actions 
are taken based on the observed damage state of each component. Five variables are optimized: age 
interval for component inspection, and type of maintenance for each of the four observed damage states. 

• Time-Periodic Inspections and Condition-Based Maintenance (TPI-CBM) policy. Time-based 
inspections are taken for all components at fixed intervals of the planning horizon. At inspection times, 
maintenance actions are taken based on the observed damage state of each component. Five variables 
are optimized: time interval for block component inspection, and type of maintenance for each of the 
four observed damage states. 

• Risk-Based Inspections and Condition-Based Maintenance (RBI-CBM) policy. Inspections are taken for 
all components each time the system exceeds a predefined failure probability threshold. At inspection 
times, maintenance actions are taken based on the observed damage state of each component. Five 
variables are optimized: failure probability threshold, and type of maintenance for each of the four 
observed damage states. 

The last two baseline policies are also optimized with Component Prioritization (CP), which produces 
policies RBI-CBM-CP and TPI-CBM-CP. Components are prioritized based on their probability of failure. 
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In this case, one extra decision variable regarding the number of components (1 to 10) to inspect and 
maintain is added. This policy adapts a heuristic presented in (Luque & Straub, 2019). In all baselines, if a 
component fails, it is immediately replaced. Such decision rules can be optimized by evaluation of possible 
policies through simulations, based on an underlying Bayesian network, or an actual physics-based model, 
or a meta-model fitted on data (Straub & Faber, 2005; Luque & Straub, 2019; Colone, et al., 2019).  

In Figure 11, a comparison of the learned DDMAC policy with the various baselines is presented, 
for the unconstrained environment (total costs and disaggregated costs in linear and log scales, 
respectively). The best optimal baseline is the policy combining risk-based inspections, condition-based 
maintenance and component prioritization. It can be observed that the lifecycle cost attained by the best 
baseline is about 42% worse than the DDMAC solution. The optimal age-periodic maintenance and fail-
replacement policies do not include the possibility of inspections and achieve the worst life- cycle costs. It 
is overall observed that baselines including inspections achieve consistently better results. Adding to this 
remark, it is interesting to note that the DDMAC policy spends more for inspections, i.e., performs a higher 
number of inspections, compared to the two best optimal baselines. As discussed, these inspections are in 
principle non-periodic and, as shown in Section 2.4, are driven by the innate notion of VoI in POMDPs. 
This allows the agents to make more informed decisions regarding proper maintenance actions that, overall, 
minimize the total cumulative costs of Eq. (19) more efficiently. Risk is significantly reduced with the 
DDMAC policy, as also indicated in Figure 11, whereas scheduled system shutdown costs are more 
intelligently avoided compared to other baselines, due to the flexibility in intervention timings and action 
combinations.  

 
 

 
 

 

Figure 11. Comparison of DDMAC lifecycle policies with different baseline policies. Total lifecycle 
cost and lifecycle costs due to inspection, maintenance, shutdown, and risk (95% confidence 
intervals are lower than ±1%). The best optimized baseline is 42% worse than the DDMAC policy. 

Constrained system solutions 
Constrained DDMAC results for lifecycle inspection costs, maintenance costs, shutdown costs, and risk for 
different 5-year constraint levels are shown in Figure 12 (all costs in log scale). As expected, higher budget 
limits result in lower total lifecycle costs. Budget limits higher than 25% of the system rebuild cost, creb, 
practically converge to the unconstrained solution. A noticeable feature of the learned near-optimal policies 
is that as the budget becomes tighter, the agents tend to reduce their inspection expenses, to save resources 
in case of a need for major interventions (e.g., restoration/replacement actions). This means that they 
deliberately choose to forfeit better system information, in order to be more effective against disruption. It 
is characteristic that inspections are overall reduced in the budget cases below 15% creb, compared to the 
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cases above that budget threshold, since the component replacement cost is 10% creb. That is, below 10% 
creb budget constraints, restorations/replacements are infeasible. In Figure 13, the respective results for risk 
constraints are shown (all costs in log scale). It can be observed that as the decision-making task becomes 
more risk averse, the total lifecycle cost becomes higher, since more frequent inspection and maintenance 
actions need to be taken. Constrained solutions practically converge to the unconstrained one after the risk 
tolerance threshold of 2.75creb. It is interesting to note here that for lower risk constraints (i.e., for scenarios 
where the agents need to keep total risk lower over the operating life), although the maintenance cost 
increases, the inspection cost is not following the same trend, hence, the inspection per maintenance cost 
ratio of the optimal policy consistently decreases. This is attributed to the fact that more frequent 
maintenance is unavoidable in a case where risks have to be kept low; something that, by itself, leads on 
average to longer sojourn in states of lower damage. As such, increased frequency of inspections, which 
would solely serve better state determination, is not favored by the agents, and thus lifecycle inspection 
costs do not present important changes for different risk-based constraints. Accordingly, due to the high 
demand for maintenance actions, scheduled shutdown costs also increase in low-risk cases.  

 

 
 
 

 
 
Figure 12. Comparison of DDMAC lifecycle 
policies for different 5-year constraints from 5% 
creb to infinity. Total lifecycle cost and lifecycle 
costs due to inspection, maintenance, 
shutdown, and risk (95% confidence intervals 
are lower than ±0.5%). 

 
 

 
 
Figure 13. Comparison of DDMAC lifecycle 
policies for different life-cycle risk constraints 
from 1 creb to infinity. Total lifecycle cost and 
lifecycle costs due to inspection, maintenance, 
shutdown, and risk (95% confidence intervals 
are lower than ±0.5%). 

 In Figure 14, action frequencies and respective cost metrics of inspection and maintenance are 
depicted for two budget constraints corresponding to a low and a high budget scenario (i.e., to 15% and 
20% creb 5-year budget constraints, respectively). Contour plots depict the frequency of maintenance and 
inspection actions per time unit. Adjacent graphs on the right show the mean step cost per component 
related to the respective action type, whereas the bottom graphs show the action cost per step, collectively 
for all system components. The same features are depicted for risk constraints of 2.75 and 3.25 creb in Figure 
15. Examining Figures 12 and 14 together, we can observe that lowering the budget from 20% to 15% creb 
has significant consequences for risk, which increases disproportionally with the achieved reduction in the 
expected total lifecycle maintenance cost. What changes significantly for maintenance cost, as shown in 
Figure 14, is its distribution per time unit and component, rather than its total lifecycle value. This is 
indicative of the general observation that stricter budgets increase risk, without necessarily yielding clear 
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economic budget-related benefits, if any, in the long run. Another interesting feature is that, in the presence 
of stricter budgets, the imbalance in the allocation of maintenance resources among components increases. 
Inspections and their respective expenditures are considerably restricted, as mentioned previously. As also 
shown in Figure 14, for the 15% creb case, inspections are rather reserved mainly for component 4, as this 
is the most vulnerable component of path 6,7,4,5, which is the path securing system survival with the least 
number of components. 

For the cases of risk-based constraints, examining Figures 13 and 15 together, we can observe that 
relevant costs are distributed more evenly in time over the planning horizon. Over the system lifecycle, we 
observe that lowering the risk tolerance considerably encumbers maintenance costs per step and in total. 
Similarly, to the budget-constrained cases, for the 2.75 creb versus 3.25 creb risk constraint case, inspections 
are prominently clustered to fewer components. Accordingly, it is observed that the agents reserve their 
inspection actions exclusively for components 3-5,7,8,10. This intrinsically prioritized selection of 
components to be frequently inspected allows the agents to track the state of at least half of the components 
from each link, and thereby to better synchronize maintenance actions in order to minimize system 
shutdowns and costs. It was observed that although mathematically feasible from an optimization 
perspective, policies below 2.0 creb start becoming practically unrealistic due to the very frequent 
restorations/replacements that need to be taken in order for the risk constraints to be satisfied. 

 
Figure 14. Components maintenance and inspection 
frequency per step and respective mean costs for 5-year 
budget constraints of 15% and 20% creb (95% confidence 
intervals are lower than ±0.5%). 

 
Figure 15. Components maintenance and inspection 
frequency per step and respective mean costs for risk 
constraints of 2.75 and 3.25 creb (95% confidence 
intervals are lower than ±0.5%). 

To look closer into how policies change for different constraints, four detailed policy realizations 
are shown in Figures 16 and 17, for the constrained environments shown in Figures 14 and 15, respectively. 
In Figure 16(a), displaying the realization of component failure probabilities and respective inspection and 
maintenance actions, for two cases of 5-year budget constraints, it can be readily observed that, in the low-
budget scenario, available budgetary resources are primarily allotted to the maintenance needs of 
components 3,4,8, and 9. This is explained by the fact that these are Type III components, thus being 
described by the most aggressive deterioration. In this realization example, only component 4 is inspected, 
since, as also explained earlier, with a budget limit close to the component replacement cost, the agents 
choose to inspect more rarely in order to save resources in case major interventions are needed. In the high-
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budget scenario, inspections play a more prominent role, since the imposed budget restrictions have become 
looser, and the agents have the budgetary capacity to afford expenditure for acquiring information. 
Although Type III components continue to receive the majority of maintenance actions, intervention 
resources are now allotted more frequently to all components. Some of the most prominent intervention 
effects significantly changing the overall system failure probability are indicated in Figure 16(b). The 
various costs are also tracked in Figure 16(c). For the 20% creb case, a notable feature can be observed for 
components 6 and 7, controlling the operability of the third link. Component 7 fails at t=38 and available 
resources do not allow for immediate replacement, which is postponed to t=40, when the next budget cycle 
begins. In the meanwhile, the agent of component 6 takes advantage of the link shutdown and applies 
repeated opportunistic partial repairs, which do not yield additional shutdown costs. Overall, it can be 
interestingly observed in Figures 14 and 16, that the agents, despite their decentralized policies, form and 
increase collaboration as the budget becomes lower, directing their focus to components that are more 
vulnerable to deterioration, or more strategically placed in terms of system connectivity. 

 
Figure 16. Lifecycle realization of the DDMAC policy for 15% creb and 20% creb 5-year budget 
constraints: (a) component failure probabilities and actions; (b) system failure with selected 
interventions; (c) costs of inspection and maintenance actions, scheduled shutdowns, and risks. 

0 5 10 15 20 25 30 35 40 45 50

time (years)

0

0.1

0.2

0.3

0.4

co
st

 / 
c

re
b risk maintenance inspection shutdown

5-year budget constraint

Type I 

Type III Type II A 

B 

10 

8 
3 4 

6 1 

9 5 

7 2 

time (years)

 
 

 
  

  
 

 
  

 
  

  
 

 
 

.003

0.02

.003

0.02

.015

0.03

0 20 40

1

3

0 20 40

1

3

0 20 40

1

3

0 20 40

1

3

0 20 40

1

3

0 20 40

1

3

0 20 40

1

3

0 20 40

1

3

0 20 40

1

3

0 20 40

1

3

.02

.003
.03

.02

.003

.003

.02

.003

4E-4

4E-3

sy
s.

 fa
il.

 p
ro

b.

#4 observed

with no damage

repairs of #8,9

#4 observed
with no damage

#4 observed

with severe

damage
replacement #2

& repairs of #1,3,8,9
replacement of #8

& repair #9

Low budget scenario (15% 
 

0 5 10 15 20 25 30 35 40 45 50

time (years)

0

0.1

0.2

0.3

0.4

co
st

 / 
c

re
b risk maintenance inspection shutdown

5-year budget constraint

Type I 

Type III Type II A 

B 

10 

8 
3 4 

6 1 

9 5 

7 2 

time (years)

 
 

 
  

  
 

 
  

 
  

  
 

 
 0 20 40

1

3

0 20 40

1

3

0 20 40

1

3

0 20 40

1

3

0 20 40

1

3

0 20 40

1

3

0 20 40

1

3

0 20 40

1

3

0 20 40

1

3

0 20 40

1

3

.002

0.01

0.01

0.03

.004

0.02

01

04

0.01

0.03
0.01

.003

0.01

.002

0.01

0.02

0.01

.002

0.01

.002

High budget scenario (20% 
 

4E-4

4E-3

4E-2

sy
s.

 fa
il.

 p
ro

b.

#4 observed

with major damage

repair of #4

#1,4,7,8 observed
with minor damage

repair of #4

#7 fails
#6,8 observed with

major damage

replacement of #7

& repairs of #6,8

Control Actions: 

0: Do Nothing 
1: Inspection 

2: Partial Repair 
3: Inspect. & Part. Repair 

4: Restoration/Replacement 

control 
 

failure sojourn 
failure prob. 

failure 
 

(a) 

(b) 

(c) 

02

01

02

02

01

01



 46 r3utc.psu.edu 
 

 
Figure 17. Lifecycle realization of the DDMAC policy for 15% creb and 20% creb 5-year budget 
constraints: (a) component failure probabilities and actions; (b) system failure with selected 
interventions; (c) costs of inspection and maintenance actions, scheduled shutdowns, and risks. 

Similar features can be seen for the low- and high-risk constraints cases of Figure 17. In the 3.25 
creb case, effectively coinciding with the unconstrained policy, a complex and diverse policy is overall 
illustrated. It is worth noting that, in the absence of any budget constraints, inspections are now taken 
frequently for all components, whereas restoration/replacement actions start to also have more prominent 
preventive characteristics (i.e., they are not only reserved for failure events). This is even more apparent in 
the low-risk scenario, in which case restorations need to be performed in a more recurrent fashion to ensure 
low probability of failure. In turn, this also causes more system closures and thus increases shutdown costs. 
To balance this side effect of frequent restorative actions, the agents are interestingly shown to deploy a 
block-restoration/replacement logic in their policies. That is, as shown in the 2.75 creb scenario of Figure 
17(a), component agents of the same links synchronize their restoration actions (e.g. components 2,3 at 
t=37; components 8-10 at t=20; components 4,5 at t=26), whereas they also start to extensively leverage 
opportunistic interventions in links where failure events occur (e.g., components 1-3 at t=12; components 
4,5 at t=39). The system failure probability and the various costs along with various actions that affect them 
are shown in Figures 17(b),(c), respectively. 

The mean failure interval probability of the system over time is shown in Figure 18, for various 5-
year budget and various lifecycle risk constraints. It is observed that, on average, system failure probability 
reaches its peak before the onset of new budget cycles. For the unconstrained case, mean failure probability 
is allowed to increase over time, without abrupt escalations, since no budget limitation is imposed. The 
7.5% creb constrained case reflects an extreme lifecycle optimization setting where no replacement actions 
are feasible. Thus, in this case no major corrective steps are detected in the evolution of the mean failure 
probability. In the case of risk constraints, the more stringent the risk constraint is, the higher is the 
reliability of the system at each time step, as anticipated. 
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Figure 1. Lifecycle realization of the DDMAC policy for 15% creb and 20% creb 5-year budget 
constraints: (a) component failure probabilities and actions; (b) system failure with selected 
interventions; (c) costs of inspection and maintenance actions, scheduled shutdowns, and risks. 

Overall, Figures 14-18 allow us to obtain insights in the ways the agents reason and adapt under a 
certain deteriorating environment, by forming and altering cooperative strategies, or dynamically re-
prioritizing inspection and maintenance resources based on different risk and resource constraints. Such 
analyses are useful in order to interpret patterns in the learned policies and can be utilized to also enhance 
more traditional decision rules, bridging optimality gaps induced by their lifecycle planning assumptions 
and formulations. 

 
CONCLUSION 
 
In this work, a stochastic optimal control framework for inspection and maintenance planning of 
deteriorating systems operating under incomplete information and constraints is developed. Decision-
making is cast in a multi-agent decentralized framework of DRL and POMDPs, where each system 
component, or control unit consisting of multiple components, acts as an independent agent given the 
dynamically updated global system state probabilistic information. While satisfying a shared overarching 
objective, each agent can make its own inspections and maintenance choices. Operational resource-based 
restrictions and policy risk considerations are taken into account by means of relevant stochastic soft and/or 
hard constraints. The latter are incorporated in the solution scheme through state augmentation, thus being 
rendered as environment properties, whereas the former are appended in the lifecycle objective function as 
dual variables, to form the Lagrangian function to be optimized. Modeling of various constraint choices is 
discussed, whereas a thorough numerical investigation is provided for budget and risk constraints, which 
are of particular significance in infrastructure management applications. Along these lines, a broad risk 
definition is also presented and utilized in the constrained optimization procedure, accommodating both the 
instantaneous and accruable nature of damage-related losses. This risk definition is further shown to be 
reducible to classic reliability-based definitions. Solutions to the optimization problem are driven by the 
introduced DDMAC algorithm. DDMAC uses both policy and value function parametrizations, experience 
replay, off-policy network parameter updating, and operates on the belief space of the underlying POMDP.  

Operation under constraints is shown to considerably affect how the agents adapt their policies. 
The conducted parametric analysis shows that: 

• The need for inspections fades in low-budget environments, where the agents tend to diminish expenses 
otherwise allotted to system information updating needs, in order to secure advanced intervention 
capabilities through availability of maintenance resources.  
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• Stricter budget constraints reduce inspection and maintenance costs for the respective budget cycle, 
however, without comparably reducing these costs in the long run, i.e., cumulatively, over the system 
lifecycle.  

• In risk-averse environments, inspection costs do not follow the notable increase in maintenance costs, 
which are necessary in order to maintain low-risk levels over the system operating life.  

• In such cases, agents are shown to increasingly leverage the structural properties of the system or 
incidental subsystem failure configurations, to develop opportunistic repair strategies, so that system 
operability is minimally disrupted.  

• Budget limitations and risk intolerance disproportionally increase the risk and maintenance costs, 
respectively, compared to the reductions they achieve in the constrained quantities. 

• For both types of constraints, multi-agent cooperation emerges more prevalent as restrictions become 
stricter, since resource scarcity and risk intolerance force the agents to more carefully reallocate resources 
and redefine management priorities, based on the specific deterioration dynamics and structural 
importance of different system parts. This rescheduling arises naturally and intrinsically through the 
training process, without any explicit user-based enforcement or penalty-driven motivation. 
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C H A P T E R  4  

Conclusions 

This report develops a prediction and decision-making framework for inspecting and maintaining 
deteriorating systems with incomplete information and constraints. In doing so, a Partially Observable 
Markov Decision Processes (POMDPs) approach is used, with an original deep reinforcement learning 
formulation. Thus, a Deep Decentralized Multiagent Actor-Critic (DDMAC) architecture is devised and 
manages to successfully tackle numerous challenges imposed by this stochastic control problem. In the 
decentralized architecture, each system component, or control unit comprised of several components, 
functions as an autonomous agent. While sharing a common goal, each agent can choose their own 
inspection and maintenance actions. 

Various constraints are also effectively incorporated in this framework. Hard constraints relate to 
deterministic quantities and available resources (e.g., yearly or 5-year fiscal budgets) and soft constraints 
are pertinent to stochastic measures, such as risk thresholds to be satisfied in expectation. Many interesting 
results and insights have been obtained based on various low- and high-budget scenarios for infrastructure 
systems, as described in Chapter 3. For example, inspection can play a less important role in low-budget 
scenarios, multi-agent cooperation emerges when resources are limited, etc. Overall, the DDMAC solutions 
significantly outperform traditional and state-of-the-art inspection and maintenance planning formulations, 
demonstrating exceptional flexibility and multi-agent cooperation in general, diverse contexts. 

Further, a deterioration model for bridge decks using Random Survival Forest is developed. The 
results suggest that AI methods can achieve high accuracy in predicting the deterioration pattern of bridge 
decks, which is an important input into the stochastic optimal control framework. The accuracy can be 
improved using models that specifically consider censored data, i.e., random survival forest. However, the 
drawback of these data-based AI predictive models is that it is difficult to interpret the impacts of different 
variables on deterioration. Therefore, while AI methods may be preferred for prediction, for construction 
or design purposes traditional stochastic methods can be more powerful. 
 
 
 

 

 

 


	Background
	Objectives
	References
	Literature REview
	Methodology
	Experiments and results
	Discussion
	Conclusions
	References
	1FIntroduction and Overview
	POMDPs in inspection and maintenance planning
	Operating under constraints
	Results
	Conclusion
	References



