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C H A P T E R  1  

Introduction 

Bridge structures are subjected to significant vibrations and repeated stress variations during their 
operational life. This leads to a potential for fatigue cracking and subsequent fatigue failure in bridges. 
Hence, fatigue analysis is necessary to accurately estimate the remaining fatigue life of a structure. This is 
typically estimated in terms of the number of stress cycles to which a structure can be subjected prior to 
failure. In this regard, the rain-flow counting algorithm is widely used in the analysis of fatigue data in 
order to reduce a spectrum of varying stress into a set of simple stress reversals and assess the fatigue life 
of a structure subjected to complex loading (Downing and Socie 1982). This procedure requires a full-field 
strain assessment of fatigue-critical locations of a structure of interest spanning over a typical loading 
period. Traditionally this entails collecting strain measurements by deploying strain gauges for fatigue life 
assessment. However, large-scale deployment of wired strain gauges is limited by cost and impractical 
deployment effort necessary with increase in desired spatial resolution of the information being sought 
(Cerda et al. 2010). An innovative sensing strategy is necessary to address these limitations wherein 
information can be extracted from inexpensive data sources. 
 Unlike strain, acceleration can be measured relatively inexpensively by means of mobile sensing, 
an area of significant interest across many fields of engineering. A mobile sensing paradigm eliminates the 
spatially restrictive feature of a fixed sensing approach. The spatial frequency obtained from mobile sensing 
is a function of speed, individual sensor sampling frequency, and the number of mobile devices that can 
simultaneously collect measurements from the same structure (Yang et al. 2004). This approach paves the 
way for crowdsourcing the data from individual members of the public, ensuring they take a much more 
active role in data collection. This will aid in providing up-to-date information on a structure’s health 
efficiently (Matarazzo and Pakzad 2013).  
 In this project we propose a deep learning framework to convert acceleration data to strain data 
utilizing underlying physical principles, and use the resulting strain data for fatigue life estimation. Figure 
1 summarizes the goals of the project. 

 

 
Figure 1. A general framework of the proposed methodology. 

  



 

 2 r3utc.psu.edu 
 

BACKGROUND 
High-fidelity modeling of complex infrastructure systems is a challenging task owing to limitations of 
modeling assumptions and significant computational costs necessary for analysis. Instead, data-driven 
approaches are attractive alternatives in the context of structural health monitoring (SHM) applications. 
This entails the construction of a surrogate model using acquired data from a system of interest that 
substitutes the physical model, circumventing the need for high-fidelity modeling (Sen and Nagarajaiah 
2018). With recent advancements in sensing technology enabling crowdsourcing, the abundance of sensed 
data provides an exciting opportunity for inferring the condition of the built environment at an 
unprecedented rate and resolution through the design life. The availability of “big data,” however, leads to 
challenges associated with storage and analysis that may impact fatigue life estimation due to the inclusion 
of multiple years’ worth of sensed data.  
 Training deep neural networks (DNNs), also referred to as deep learning, has emerged as the state-
of-the-art tool for harnessing big data (Najafbadi et al. 2015). With the increase in size of available data for 
training DNNs, deep learning algorithms have demonstrated enhanced performance in all required tasks in 
fields spanning from engineering to natural sciences. This makes DNN an ideal candidate for the problem 
at hand. DNNs consist of multiple layers of neural network elements to process and extract inherent features 
of a data set. Each layer holds valuable information related to the features and the underlying structure of 
the data that helps build a surrogate model that facilitates data-driven decision-making and predictions.    
 The implementation of DNNs varies greatly depending on the domain of application. For example, 
convolutional neural networks (CNNs) are preferred to deal with spatial dependencies (e.g., image 
classification, video recognition) (Lecun and Bengio 1995, Krizhevsky et al. 2012). CNNs are composed 
of local receptive fields and shared weights that allow the extraction of multiple feature maps to encode 
spatial correlations in the input data set. On the other hand, recurrent neural networks (RNNs) are 
extensively used to extract temporal dynamic behavior for a time sequence (e.g., language translation, 
speech recognition, language modeling) (Gers et al. 1999, Graves et al. 2013, Sutskever et al. 2014). RNNs 
have two sources of input, the present and the recent past of a temporal sequence, which combine to 
determine how they respond to new data. In other words, the decision that an RNN makes at time step t-1 
affects the decision it will reach at the subsequent time step t. 
 In civil engineering applications, dense sensor networks produce dynamic and nonlinear spatio-
temporal data, which are unique to each structure. The acquired data can then be used for dynamic 
characterization of the structure, and subsequently for tasks such as parameter estimation and condition 
assessment that have a physical basis, unlike applications in many other fields. This necessitates the 
development of customized neural networks that, in addition to harnessing the power of big data, should 
account for the inherent physical principles that govern the behavior of the system. This physics-inspired, 
data-driven paradigm will lead to enhanced performance. 

OBJECTIVES 
The overarching theme of the project was to employ recent advances in deep learning in conjunction with 
rigorous physics-based foundations to exploit sensed data from SHM applications. The key objectives of 
the project were as follows: 

1. To develop a deep learning-based framework that accounts for known structural behavior and 
estimate strains from acceleration data. The proposed DNN architecture will also address SHM-
specific issues such as measurement noise, missing data, and robustness of the resulting decision-
making framework. Since the proposed DNN architecture involves only linear operations followed 
by simple nonlinear operations, post training it enables real-time analysis. 

2. To develop a mobile phone application that collects acceleration and GPS data (e.g., when the phone 
is traveling over a bridge) from multiple phones and uploads it to a server. On this server, the data 
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uploaded from multiple phones will be aligned, categorized, and processed. The acquired data will 
then be used to train the DNN framework.  

3. To validate the performance of the proposed frameworks through experimental studies. The 
laboratory experiment includes a horizontally curved girder.  

DATA AND DATA STRUCTURES 
The project evaluates the performance of the proposed DNN framework through laboratory experiments. 
For objective 1, a laboratory experiment involving a curved girder was performed. The details of the testbed 
and instrumentation are provided in the subsequent sections of this report. The installed sensors collected 
both accelerations and strains from the girder.  For objective 2, a laboratory experiment involving two 
mobile phones placed on a shaking table was performed. This was a first step to test the efficacy of the data 
collection prowess and time synchronization that are crucial for an effective analysis.  
 
The raw data are available upon request from the PI as ASCII text files. 
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C H A P T E R  2  

Methodology 

PROPOSED DNN FRAMEWORK 

DNN for converting acceleration to strain  

Overview 

In this section we provide a general map of the proposed technique composed of training and testing phases. 
The training phase aims to establish a relationship between acceleration and strain for selected locations on 
a structure (i.e., the number of locations, 𝑅𝑅) under the loading conditions included in the training dataset. 
The proposed DNN is trained to minimize the error between predicted and actual strain responses at the 
selected locations to establish the required relationship. The trained model parameters are subsequently 
used in the testing phase, wherein acceleration data from desired locations are used as inputs to the proposed 
architecture to predict strain responses. It should be noted that the number of desired locations is greater 
than 𝑅𝑅. 
 

 
Figure 2.  (a) Randomized mini-batch for training phase, (b) closer look at the  

subsequence, (c) sampling for testing phase. 
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 Let us assume that the training data set has a total number of 𝑀𝑀 samples each of length 𝑇𝑇, that 
includes sensor readings from only one location (𝑅𝑅 = 1). Each sample (𝑚𝑚: 1,⋯ ,𝑀𝑀) has both acceleration 
�𝑥𝑥𝑚𝑚1 ,𝑥𝑥𝑚𝑚2 , … , 𝑥𝑥𝑚𝑚𝑖𝑖 , … , 𝑥𝑥𝑚𝑚𝑇𝑇 � and strain responses �𝑦𝑦𝑚𝑚1 ,𝑦𝑦𝑚𝑚2 , … , 𝑦𝑦𝑚𝑚𝑖𝑖 , … ,𝑦𝑦𝑚𝑚𝑇𝑇 �. The proposed approach randomly 
selects sequences from the given training dataset and utilizes only a portion of these sequences. Figure 2a 
shows 𝑀𝑀 acceleration responses from a sensor and randomized mini-batch selection with size 𝑁𝑁. The sub-
sequences form mini-batches such that there might be overlap across sequences, but not across the samples. 
The random sampling is repeated for each iteration during the training.  
 

 
Figure 3.  A general map of the proposed approach. 

  
 The proposed methodology performs a three-step training to learn long time sequences. In each 
step, the randomly selected subsequence forms three parts: Part A, Part B, and Part C (Figure 1b) to be used 
in Step A, Step B, and Step C, respectively. The procedure of the approach for each iteration of an epoch 
is presented in Figure 3 (i.e., an epoch is one forward and one backward pass of all training datasets; an 
iteration is one forward and one backward pass of the batch). In Step A, Part A from time 𝑖𝑖 up to time 𝑖𝑖 + 𝐿𝐿, 
�𝑥𝑥𝑚𝑚𝑖𝑖:𝑖𝑖+𝐿𝐿�, feeds the first network (DNN 1). This 𝐿𝐿 length sequence is adopted for the high-level estimation 
of the input and the initial state for Step B. Such a step can also be thought of as the nonlinear mapping of 
the input to summarize the dynamics of the sequence for more efficient learning and faster convergence. 
Step B feeds the second network (DNN 2) that is composed of long short-term memory (LSTM) memory 
cells. These cells operate on the 𝐾𝐾 length input sequence 𝑥𝑥𝑚𝑚𝑖𝑖+𝐿𝐿+1:𝑖𝑖+𝐿𝐿+𝐾𝐾 and the initial state estimation from 
Step A. The LSTM cell translates the acceleration sequences to the strain sequences from time 𝑖𝑖 + 𝐿𝐿 + 1 
to 𝑖𝑖 + 𝐿𝐿 + 𝐾𝐾 and updates both the internal and hidden states. Step C utilizes the time series 𝑥𝑥𝑚𝑚𝑖𝑖+𝐾𝐾:𝑖𝑖+𝐿𝐿+𝐾𝐾 to 
help DNN 1 to make better initial state estimations for the next iterations. In other words, Steps A and C 
share the same parameters. The goal of the proposed approach is to minimize the loss between the cell 
states from Steps B and C (ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), as well as the true and predicted strain time series (ℒ𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝) at the same 
time. 
 During testing, all of the sequence is predicted by sliding the indexes used while forming the parts. 
Figure 2c shows the first subsequence 𝑥𝑥𝑚𝑚1:𝐿𝐿+𝐾𝐾 with a length 𝐿𝐿 + 𝐾𝐾 that estimates the strain response of 
length 𝐾𝐾. Then, the subsequence 𝑥𝑥𝑚𝑚𝐾𝐾:𝐿𝐿+2𝐾𝐾 starts estimating the next part of the sequence of length 𝐾𝐾. By 
repeating this, the whole time series is predicted. During testing, the first 𝐾𝐾 length response estimation 
needs high-level representation for the first 𝐿𝐿 points. Thus, the total number of subsequences necessary to 
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estimate the strain response is the total length of samples 𝑇𝑇 divided by 𝐿𝐿 + 𝐾𝐾 and subtracted by the first 𝐿𝐿 
points. 

Architechture and training 

During training, inputs are designed as tensors that contain the features of the input sequence with the shape 
of [minibatch size, subsequence length, number of sensors]. For Step A, the 𝑁𝑁 batch of input series with 
shape [𝑁𝑁, 𝐿𝐿,𝑅𝑅] is fed into the DNN 1 to obtain a high-level representation of the input. DNN 1 is designed 
to have multiple fully connected (FC) layers to create initial estimation for the internal (𝑐𝑐) and hidden (ℎ) 
states at time 𝑖𝑖 + 𝐿𝐿. The ReLU function, 𝑓𝑓(𝑥𝑥) = max(0, 𝑥𝑥), is adopted as nonlinear activation. The shapes 
of both states are defined as [mini-batch size, number of LSTM layers, hidden layer size].  
 The input of Step B with the shape [𝑁𝑁,𝐾𝐾,𝑅𝑅] is fed through DNN 2, which is composed of LSTM 
cells. In this step, the output of the LSTM is fed through an FC layer to obtain a strain sequence with the 
same size of the input. Furthermore, the calculated internal and hidden states are updated from time 𝑖𝑖 + 𝐿𝐿 +
1 to time 𝑖𝑖 + 𝐿𝐿 + 𝐾𝐾. In the last step, the network takes 𝑥𝑥𝑚𝑚𝑖𝑖+𝐾𝐾:𝑖𝑖+𝐿𝐿+𝐾𝐾 to retain the nonlinear representation of 
the context and updates the internal and cell states found by DNN 1.  
 The loss function is defined as the summation of mean squared error of the predicted and true values 
of the acceleration sequences, and internal and hidden states from Step B and Step C. The network is trained 
by ADAM optimizer, which is an adaptive learning rate algorithm (Kingma & Ba, 2014). The computations 
are performed on NVIDIA Tesla K80 GPUs. PyTorch is used as the optimized tensor library for deep 
learning (Paszke et al. 2019). 

EXPERIMENTAL SETUP FOR VALIDATING DNN FRAMEWORK 
To address geometric design of transportation infrastructure such as complex geometries, site constraints, 
and dense highway infrastructure systems, horizontally curved highway bridges are widely constructed 
despite design challenges stemming from torsional loads and flange lateral buckling (Putnam 2010). These 
bridges commonly consist of either I-girders or box girders that suffer from torsional weakness and/or costly 
fabrication. A study by Dong (2008) offered tubular flange girder (TFG) that replaces the flanges of the I-
girder with tubular flanges to have higher torsional stiffness, higher strength, and easy manufacture. 
 Dong (2008) designed a full-scale curved TFG according to AASHTO (2005). This was followed 
by a half-scale test specimen built by Putnam (2010) to analyze the behavior of TFG subjected to the loads 
in the elastic regime. In this project we use the same test specimen to evaluate the performance of the 
proposed methodology on complex geometry. The following sections present the details of the test setup, 
procedure, and vibration analysis of the specimen. 

Test setup 
The test setup includes the main components of support beams, end overturning brackets, and bearings, as 
shown in Figure 4. A simple span horizontally curved girder is placed on top of two W14×167 steel beam 
pedestals, which are elevated such that the north pedestal is on a same level with the south pedestal. One-
inch stiffeners are welded to the support pedestals with the approximate length of 1.83 m (6 ft). The curved 
girder is restrained by two 10.16-cm (4-inch) diameter pin bearings located on top of the support beams. 
The end overturning brackets at the bearings are positioned to resist the torques resulting from vertical loads 
acting on the shear center of the girder and prevent it from rolling outside. These brackets are attached to 
the support beams with bolts.  
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Figure 4.  The laboratory test setup along with the instrumentation plan. 

 
 The TFG test specimen is approximately 9.14 m (30 ft) long and 40.64 cm (16 ft) deep and consists 
of tubular flanges welded to the web. The top and bottom tubes are ASTMA500 Grade B with a minimum 
yield stress of 𝐹𝐹𝑦𝑦 = 317 MPa and ultimate tensile stress of 𝐹𝐹𝑢𝑢 = 400 MPa. The girder has five transverse 
stiffeners and two bearing stiffeners that increase the shear resistance of the web and control web and tube 
distortion. The three faces of contact between stiffener and girder are welded. A concrete infill is injected 
in the region of the bearings to stiffen it for the reaction forces. The total self-weight of the test specimen 
consisting of the top and bottom tubes, web, and transverse stiffeners is approximately 670 kg. 
 

 
Figure 5.  (a) Plan view, (b) location of the loadings and sensors, (c) strain gauge location details 

for the bottom of bottom tube. 

Instrumentation 
The girder is measured by a network of six accelerometers (𝐴𝐴0 − 𝐴𝐴5), four strain gauges (𝑆𝑆1 − 𝑆𝑆4), and a 
portable data acquisition system. Figure 4 shows the labeling and an overview of the instrumentation 
locations. Both the accelerometers and strain gauges are laid out across the length of the girder between the 
transverse stiffeners, along the midway of the bottom flange, as in Figure 5c. 
 The vertical bridge acceleration is usually significant for bridges because of its relevance to the 
stress of the members and their fatigue lives (Chen and Cai 2007). The response of the test specimen is 
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measured by using six uniaxial DC accelerometers that are manufactured by Silicon Designs, Inc. (model 
2210-002). The sensors have a characteristic noise floor of  10 μg∕√Hz for ±2 g. The accelerometers are 
attached to the metal plate that is clamped to the girder. 
 The instrumentation consists of four weldable strain gauges LWK-06-W250B-350 with an active 
grid length of 0.25 inch. The strain gauges are spot welded to the tested structure in the field such that it 
measures strain in the axial direction. After installation, the gauges are covered with a multilayer system 
and then sealed with a silicon type agent. A Campbell Scientific CR9000 Data Logger is used for the 
collection of the data throughout the long-term monitoring. The logger is a high speed, a multichannel 16-
bit system that is configured with digital and analog filters. In this setup, the data are filtered using a filter 
card at a frequency of 100 Hz. 

Test procedure 
The vibration and strain measurement of the curved girder are collected to establish the dynamic 
characteristics of the structure. Ambient vibrations are recorded, each time for over a 10-min duration using 
a sampling frequency of 250 Hz (1,500,000 samples/channel). The data are collected for 2 months on 
different days and at different time periods with varying temperatures of 9 ˚C – 29 ˚C. Distributed weights 
are added to the system such that the three lowest mode frequencies are between 5 and 50 Hz. The steel 
plate weights are placed such that they cover the whole surface of the girder except the loading locations. 
The total distributed load added to the system is measured as 120.84 kg/m. 
 Bridges are subjected to different types of vibration during their operation conditions such as low-
amplitude ambient vibrations due to wind loading and car traffic, sudden high-amplitude impact-type 
ambient vibrations due to heavy trucks, and stronger vibrations. In order to perform similar excitation 
scenarios, four different loading types are applied on the girder to the locations illustrated in Figure 4. Table 
1 summarizes the number of samples, the application locations, and maximum and minimum ambient 
vibration amplitudes of the load categories. 

Table 1. Load types. 

Type Location No. of 
Samples 

Max.  
Accel. 
(mg) 

Min.  
Accel. 
(mg) 

Max. 
Strain 
(𝛍𝛍𝜺𝜺) 

Min. 
Strain 
(𝛍𝛍𝜺𝜺) 

Type I P1 or P2 or P4 54 196.0 -242.6 37.31 -24.39 
Type II P1 and P4 20 306.6 -413.0 52.02 -31.53 
Type III Hammer and P1 or P4 16 478.0 -685.6 28.22 -13.09 
Type IV P1, P2, P3, and P4 12 516.9 -723.3 56.54 -52.74 

 
 For the low-amplitude ambient vibrations, a person taps on the girder with random frequencies 
without adding extra weight on the girder. The loading is applied on the structure at locations P1, P2, or P4 
and called Type I loading. For Type I, the magnitude of the vibrations does not exceed 200 mg and strains 
are less than 40 μ𝜀𝜀. A similar type of loading condition is generated by two people tapping the girder at 
points P1 and P4. Such loading is applied to get medium-amplitude vibrations and is called Type II loading. 
Heavier loading is simulated by hitting the structure with a hammer and stepping on different locations at 
the same time. One person hits the girder with different amplitudes and frequencies while another person 
taps the girder at the points P1, P2, or P4. This type of loading is referred to as Type III loading. Type III 
loading produces high acceleration but smaller strains relative to the other loadings. Finally, strong 
excitation is simulated by tapping the girder from four locations at the same time to obtain Type IV loading. 
For Type IV, high vibrations cause high strains in the girder. 
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Data analysis 
Modal parameter identification is performed using the output-only Eigensystem Realization Algorithm 
(ERA) using software package SMIT (Chang and Pakzad 2013). In this study, only vertical mode shapes 
are an area of interest due to the sensor placement (as opposed to transverse and torsional modes). Table 2 
summarizes the average modal frequency and damping ratios for each loading type. Vertical modal 
frequencies have an agreement for each loading category (i.e., the highest error is less than 5% except the 
fourth mode, which is not observable in all samples). However, the errors in the estimated damping ratios 
are relatively high, which is a common problem in the literature (Eshkevari and Pakzad 2020). 

Table 2.  Modal frequencies of the load types. 

Type 
Mode 

1 
Freq. 
(Hz) 

Mode 
2 

Freq. 
(Hz) 

Mode 
3 

Freq. 
(Hz) 

Mode 
4 

Freq. 
(Hz) 

Mode 1 
Damping 

(%) 

Mode 2 
Damping 

(%) 

Mode 3 
Damping 

(%) 

Mode 4 
Damping 

(%) 

Type I 6.81 26.31 47.90 67.97 2.16 1.23 2.11 1.67 
Type II 6.84 26.03 47.52 61.00 2.12 1.24 2.02 3.42 
Type III 6.70 26.30 48.42 61.44 2.32 1.30 2.11 3.77 
Type IV 6.54 26.08 47.28 61.18 2.49 1.42 3.03 3.79 

 

Proposed architechture 
Figure 6 shows the proposed DNN architecture that is constructed after a design space exploration process. 
The network operates on time series that is normalized between [−1,1] after dividing by the maximum of 
the training dataset. Then the sequences are downsampled by four to remove high-frequency noise existing 
in the data. Eighty-five percent of the post-processed time histories are randomly selected to form the 
training dataset. The remaining 15% of the samples are used to perform testing. During training, 
acceleration time histories collected from one location (𝑅𝑅 = 1) are used to estimate the strain responses. 
Powers of two are often selected to be the mini-batch size; thus, 𝑁𝑁 is adopted as 128. The lengths of the 
subsequences formed in Step A (𝐿𝐿) and Step B (𝐾𝐾) are assigned as 50 and 100, respectively. In every 
iteration, one forward and backward pass is completed and parameters are updated for a mini-batch. Then 
the training and testing errors of the samples are computed. This process is repeated for 1,000 iterations per 
epoch. The network is run for 100 epochs each consisting of 1,000 iterations. 
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Figure 6.  The proposed network topology. 

 
 For Step A, input size of [128, 50, 1] is stacked into [128, 200] shaped array to feed five connected 
layers. The resultant of these FC layers are used to create hidden and internal state estimates for Step B. 
The size of the LSTM hidden state is defined as 128. During this step, both strain sequences and LSTM 
state parameters are predicted. The output of LSTM cell is passed through another FC layer to obtain strain 
estimates in the selected location. In Step C, [128, 150, 1] sized inputs are fed into the same four FC layers 
to regularize the LSTM state parameter of Step B. 

SOFTWARE DEVELOPMENT FOR ANDROID APPLICATION 
The software solution has two parts, the android application and the database server. Let us describe each 
part separately. 
 The database server is used to store the data collected from the mobile applications. We have 
implemented a PHP web service, which after successful authentication will store the data pushed by the 
android application. The data are stored in a MySQL database. For each unit of data stored, the database 
will not only store the measured data but also a unique identifier of the phone that executed the android 
application. The database server also keeps a list of bridges that a user would like to collect data from. 
 The android application periodically checks for the list of bridges and allows users to confirm or 
decline the collection process for each offered bridge. For every bridge from which the user allows the 
application to collect data, we create a Geofence, 
https://developer.android.com/training/location/geofencing. The goal of this application programming 
interface (API) is to allow the application to be inactive when the user is far away from a bridge, and once 
the user gets into close proximity of the bridge, the application will wake up automatically and will start 
collecting data. Once the user leaves the bridge (geofence), the collection process is stopped. Every 15 
minutes the application checks if there are any data collected ready to be uploaded to the database server 
(if the phone is not on wifi, nothing will be uploaded even if there are some measurements). Before 
uploading the data to the server, we get the current time from time server, using the Network Time Protocol 
(NTP) https://developer.android.com/reference/com/google/android/things/device/TimeManager. 
Subsequently, we compare the time with a local device time. The difference between local device time and 
the time server (time offset) is also stored with the data in the database. 

https://developer.android.com/training/location/geofencing
https://developer.android.com/reference/com/google/android/things/device/TimeManager
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Test procedure 
Before testing the android application on real bridges, we first wanted to test the data collection process 
and the time synchronization with the time server. To accomplish this, we installed the collection 
application on two android phones and placed them next to each other on a shaker (see Figure 7). 
 

 
Figure 7. Experimental setup for testing the data collection API: (left) two  

smartphones attached to a shaking table, (right) signal generator for shaking table. 
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C H A P T E R  3  

Findings 

RESULTS FOR DNN FRAMEWORK 
This section presents the performance analysis of the proposed deep learning methodology. The 
applicability of the algorithm is verified through four cases, where each training case employs measured 
acceleration and strain from one location. Then, the testing phase is performed by using only measured 
acceleration collected from various desired locations. For instance, in Case 1, the acceleration–strain sensor 
pair of 𝐴𝐴1 and 𝑆𝑆1 is adopted for training. The saved model parameters and acceleration data 𝐴𝐴2, 𝐴𝐴3, 𝐴𝐴4 are 
utilized to estimate strains where 𝑆𝑆2, 𝑆𝑆3, 𝑆𝑆4 are located. The estimated strains are called �̂�𝑆2, �̂�𝑆3, �̂�𝑆4.  Note 
that only accelerometers (𝐴𝐴1 − 𝐴𝐴4) are used during the assessment of the methodology. 𝐴𝐴0 and 𝐴𝐴5 are 
utilized only for the analysis of data (modal identification described earlier). 
 The error in the strain estimates is measured by using time–response assurance criterion (TRAC). 
TRAC number is a widely used measure in virtual sensing that gives the overall correlation of the time 
histories of true and estimated strain values. TRAC values close to unity indicate high correlation of the 
estimated strains. 

 

𝑇𝑇𝑅𝑅𝐴𝐴𝑇𝑇 =
(∑ 𝑦𝑦�(𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑠𝑠=𝑇𝑇

𝑠𝑠=0 )2

(∑ 𝑦𝑦�(𝑡𝑡)𝑦𝑦�(𝑡𝑡)𝑠𝑠=𝑇𝑇
𝑠𝑠=0 )(∑ 𝑦𝑦(𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑠𝑠=𝑇𝑇

𝑠𝑠=0 )
 

 
Figure 8. TRAC values of the testing dataset. 

 
 The TRAC analysis of 15 testing samples was performed for four evaluation scenarios and the 
results are summarized in Figure 8. Each case includes three strain predictions based on four different load 
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types. The majority of the configurations have TRAC values above 0.8; hence, there is a high agreement 
between the predicted and true time histories. 
 Type III loading is a special case where high acceleration does not cause high strain values. Hence, 
in this caese the relationship between normalized acceleration and strains is not very easy to predict. 
Moreover, when the power spectral densities are investigated, it can be observed that some samples do not 
contain all frequency components under Type III loading. However, all TRAC values of the Type III 
loading are above 0.5, which indicates good generalization of the designed network architecture. Moreover, 
as expected, it can be seen that TRAC numbers are slightly higher when the trained sensor location is closer 
to the estimated strain locations. 
Figure 9 illustrates the target and predicted strain time series for a representative sample selected from each 
loading case. These plots include denormalized strain sequences and predictions for the 10-min time history 
and zoomed time history where the maximum strain is observed. The proposed technique is able to provide 
strain response histories that accurately represent the actual measurements even for the unmeasured 
locations and the loading cases that are different than the training dataset.  
 

 
Figure 9. Strain predictions for sensor 𝑺𝑺𝟏𝟏 with training scenario 𝑪𝑪𝟒𝟒. From left to right:  
10-min time history, zoomed time history where the maximum strain is observed, and  

rainflow counting histograms of the measured (blue) and predicted (red) strain signals. 
 

 In addition, the rainflow histograms are generated that are necessary to estimate the fatigue damage 
accumulation. The estimated and true rainflow histograms are compared. The histograms summarize the 
number of cycles for a given strain amplitude range where the bin size of 1μ𝜀𝜀 is employed. Good agreement 
is obtained between true and estimated counts for all load cases. The fatigue life of the specimen is 
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calculated using Miner’s Rule and the fatigue life of the specimen is determined as infinite for both target 
and prediction.  
 The performance of three-step training is compared with training using only Step B. The root mean 
squared error (RMSE) of the testing dataset is computed for both approaches. While training with Step B, 
LSTM network parameters are initialized by zeros. Figure 10 shows the average RMSE between predictions 
and strain gauges 𝑆𝑆2, 𝑆𝑆3, 𝑆𝑆4. As there are three testing cases to estimate each strain gauge location (e.g., 
strains �̂�𝑆2 can be predicted by using acceleration-strain pairs (𝑆𝑆1 − 𝐴𝐴1, 𝑆𝑆3 − 𝐴𝐴3, 𝑆𝑆4 − 𝐴𝐴4)), the average of 
these cases is reported. According to the figure, RMSE of the predictions is smaller than 1μ𝜀𝜀. Additionally, 
it can be seen that average RMSE values are reduced by 5–10% by introducing Steps A and C, as the 
information from continuous dynamical behavior of the structures helps initialize the parameters more 
accurately and improve the convergence.  

 
Figure 10. Root mean squared error (RMSE) of the strain predictions. 

 
 The training and testing time are also compared. The training time per iteration is stated as 0.061 
and 0.053 ms for Steps A–C and only Step B, respectively. The total time for each epoch is found as 65.64 
ms for the three-stage and 57.64 ms for only Step B. It can be seen that performing only Step B does not 
drastically reduce the training time. Also, as the good convergence is not satisfied easily, more epochs 
might be necessary that can increase the total training time. The time for the testing is reported as 0.826 ms 
for the proposed approach that is very close to utilizing only Step B (0.796 ms). 

RESULTS FOR API TESTING 
We tried various frequencies and shaking patterns. In Figure 11 left, we are showing the acceleration in one 
selected direction for LG and Samsung (SM) using only the device time-stamps. One can easily observe 
that both phones have different local times, shifted by many ms. Figure 11 right shows the adjusted data 
from LG and SM with the time offset obtained from the time server. Clearly, the data are much better 
aligned.  
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Figure 11. Comparison of (left) accelerations recorded in an LG and Samsung (SM) 

smartphone and (right) acceleration time histories post time synchronization. 
 
 
A zoomed view of the time-aligned data is shown in Figure 12. 
 

 
Figure 12. A zoomed view of Figure 11 right. 
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C H A P T E R  4  

Recommendations 

FUTURE DIRECTIONS OF RESEARCH 
In this project we demonstrate the efficacy of a DNN-based framework for estimating dynamic strain from 
acceleration measurements for complex bridge infrastructure. The proposed DNN-based framework 
attempts to establish the nonlinear map that translates acceleration to strain in the presence of noise.  It 
accurately predicts the strain response from acceleration measurements. Furthermore, it also predicts the 
rainflow histograms very accurately, which enables an accurate and efficient fatigue life analysis. 
Additionally, we performed preliminary validation of a smartphone application that will aid in data 
collection.  
 
In the future, the research team plans to further generalize the DNN framework and validate the data 
collection API by pursuing the following  directions: 

• Harness the power of further advancements in deep learning that will allow for modeling the 
various spatio-temporal dependencies of the problem. 

• Enhance the existing networks such that with inclusion of more data, one can estimate strains in 
other directions. 

• Augment deep learning frameworks with more involved physical principles associated with the 
problem at hand to enhance performance and facilitate interpretability from a physical standpoint.  

• Test the developed API in real-world scenarios; for example, collect data inside vehicles while 
driving over a bridge. 
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